tf.sparse_merge(sp_ids, sp_values, vocab_size, name=None, already_sorted=False)
See the guide: Sparse Tensors > Conversion
Combines a batch of feature ids and values into a single SparseTensor
.
The most common use case for this function occurs when feature ids and their corresponding values are stored in Example
protos on disk. parse_example
will return a batch of ids and a batch of values, and this function joins them into a single logical SparseTensor
for use in functions such as sparse_tensor_dense_matmul
, sparse_to_dense
, etc.
The SparseTensor
returned by this function has the following properties:
indices
is equivalent to sp_ids.indices
with the last dimension discarded and replaced with sp_ids.values
.values
is simply sp_values.values
.sp_ids.dense_shape = [D0, D1, ..., Dn, K]
, then output.shape = [D0, D1, ..., Dn, vocab_size]
.For example, consider the following feature vectors:
vector1 = [-3, 0, 0, 0, 0, 0] vector2 = [ 0, 1, 0, 4, 1, 0] vector3 = [ 5, 0, 0, 9, 0, 0]
These might be stored sparsely in the following Example protos by storing only the feature ids (column number if the vectors are treated as a matrix) of the non-zero elements and the corresponding values:
examples = [Example(features={ "ids": Feature(int64_list=Int64List(value=[0])), "values": Feature(float_list=FloatList(value=[-3]))}), Example(features={ "ids": Feature(int64_list=Int64List(value=[1, 4, 3])), "values": Feature(float_list=FloatList(value=[1, 1, 4]))}), Example(features={ "ids": Feature(int64_list=Int64List(value=[0, 3])), "values": Feature(float_list=FloatList(value=[5, 9]))})]
The result of calling parse_example on these examples will produce a dictionary with entries for "ids" and "values". Passing those two objects to this function along with vocab_size=6, will produce a SparseTensor
that sparsely represents all three instances. Namely, the indices
property will contain the coordinates of the non-zero entries in the feature matrix (the first dimension is the row number in the matrix, i.e., the index within the batch, and the second dimension is the column number, i.e., the feature id); values
will contain the actual values. shape
will be the shape of the original matrix, i.e., (3, 6). For our example above, the output will be equal to:
SparseTensor(indices=[[0, 0], [1, 1], [1, 3], [1, 4], [2, 0], [2, 3]], values=[-3, 1, 4, 1, 5, 9], dense_shape=[3, 6])
sp_ids
: A SparseTensor
with values
property of type int32
or int64
.sp_values
: ASparseTensor
of any type.vocab_size
: A scalar int64
Tensor (or Python int) containing the new size of the last dimension, all(0 <= sp_ids.values < vocab_size)
.name
: A name prefix for the returned tensors (optional)already_sorted
: A boolean to specify whether the per-batch values in sp_values
are already sorted. If so skip sorting, False by default (optional).A SparseTensor
compactly representing a batch of feature ids and values, useful for passing to functions that expect such a SparseTensor
.
TypeError
: If sp_ids
or sp_values
are not a SparseTensor
.Defined in tensorflow/python/ops/sparse_ops.py
.
© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/sparse_merge