tf.contrib.learn
High level API for learning. See the Learn (contrib) guide.
class BaseEstimator: Abstract BaseEstimator class to train and evaluate TensorFlow models.
class DNNClassifier: A classifier for TensorFlow DNN models.
class DNNLinearCombinedClassifier: A classifier for TensorFlow Linear and DNN joined training models.
class DNNLinearCombinedRegressor: A regressor for TensorFlow Linear and DNN joined training models.
class DNNRegressor: A regressor for TensorFlow DNN models.
class Estimator: Estimator class is the basic TensorFlow model trainer/evaluator.
class Evaluable: Interface for objects that are evaluatable by, e.g., Experiment.
class Experiment: Experiment is a class containing all information needed to train a model.
class KMeansClustering: An Estimator fo rK-Means clustering.
class LinearClassifier: Linear classifier model.
class LinearRegressor: Linear regressor model.
LogisticRegressor(...): Builds a logistic regression Estimator for binary classification.
class MetricSpec: MetricSpec connects a model to metric functions.
class ModeKeys: Standard names for model modes.
class ModelFnOps: Ops returned from a model_fn.
class NanLossDuringTrainingError
class NotFittedError: Exception class to raise if estimator is used before fitting.
class RunConfig: This class specifies the configurations for an Estimator run.
class Trainable: Interface for objects that are trainable by, e.g., Experiment.
build_parsing_serving_input_fn(...): Build an input_fn appropriate for serving, expecting fed tf.Examples.
datasets module: Dataset utilities and synthetic/reference datasets.
evaluate(...): Evaluate a model loaded from a checkpoint. (deprecated)
extract_dask_data(...): Extract data from dask.Series or dask.DataFrame for predictors.
extract_dask_labels(...): Extract data from dask.Series or dask.DataFrame for labels.
extract_pandas_data(...): Extract data from pandas.DataFrame for predictors.
extract_pandas_labels(...): Extract data from pandas.DataFrame for labels.
extract_pandas_matrix(...): Extracts numpy matrix from pandas DataFrame.
graph_actions module: High level operations on graphs.
head module: Abstractions for the head(s) of a model.
infer(...): Restore graph from restore_checkpoint_path and run output_dict tensors. (deprecated)
infer_real_valued_columns_from_input(...): Creates FeatureColumn objects for inputs defined by input x.
infer_real_valued_columns_from_input_fn(...): Creates FeatureColumn objects for inputs defined by input_fn.
io module: Tools to allow different io formats.
models module: Various high level TF models.
monitors module: Monitors instrument the training process.
ops module: Various TensorFlow Ops.
preprocessing module: Preprocessing tools useful for building models.
read_batch_examples(...): Adds operations to read, queue, batch Example protos.
read_batch_features(...): Adds operations to read, queue, batch and parse Example protos.
read_batch_record_features(...): Reads TFRecord, queues, batches and parses Example proto.
run_feeds(...): See run_feeds_iter(). Returns a list instead of an iterator. (deprecated)
run_n(...): Run output_dict tensors n times, with the same feed_dict each run. (deprecated)
train(...): Train a model. (deprecated)
utils module: TensorFlow Learn Utils.
Defined in tensorflow/contrib/learn/__init__.py.
© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/learn