W3cubDocs

/TensorFlow Python

Module: tf.contrib.learn

Module tf.contrib.learn

High level API for learning. See the Learn (contrib) guide.

Members

class BaseEstimator: Abstract BaseEstimator class to train and evaluate TensorFlow models.

class DNNClassifier: A classifier for TensorFlow DNN models.

class DNNLinearCombinedClassifier: A classifier for TensorFlow Linear and DNN joined training models.

class DNNLinearCombinedRegressor: A regressor for TensorFlow Linear and DNN joined training models.

class DNNRegressor: A regressor for TensorFlow DNN models.

class Estimator: Estimator class is the basic TensorFlow model trainer/evaluator.

class Evaluable: Interface for objects that are evaluatable by, e.g., Experiment.

class Experiment: Experiment is a class containing all information needed to train a model.

class ExportStrategy

class KMeansClustering: An Estimator fo rK-Means clustering.

class LinearClassifier: Linear classifier model.

class LinearRegressor: Linear regressor model.

LogisticRegressor(...): Builds a logistic regression Estimator for binary classification.

class MetricSpec: MetricSpec connects a model to metric functions.

class ModeKeys: Standard names for model modes.

class ModelFnOps: Ops returned from a model_fn.

class NanLossDuringTrainingError

class NotFittedError: Exception class to raise if estimator is used before fitting.

class PredictionKey

class ProblemType

class RunConfig: This class specifies the configurations for an Estimator run.

class TaskType

class Trainable: Interface for objects that are trainable by, e.g., Experiment.

build_parsing_serving_input_fn(...): Build an input_fn appropriate for serving, expecting fed tf.Examples.

datasets module: Dataset utilities and synthetic/reference datasets.

evaluate(...): Evaluate a model loaded from a checkpoint. (deprecated)

extract_dask_data(...): Extract data from dask.Series or dask.DataFrame for predictors.

extract_dask_labels(...): Extract data from dask.Series or dask.DataFrame for labels.

extract_pandas_data(...): Extract data from pandas.DataFrame for predictors.

extract_pandas_labels(...): Extract data from pandas.DataFrame for labels.

extract_pandas_matrix(...): Extracts numpy matrix from pandas DataFrame.

graph_actions module: High level operations on graphs.

head module: Abstractions for the head(s) of a model.

infer(...): Restore graph from restore_checkpoint_path and run output_dict tensors. (deprecated)

infer_real_valued_columns_from_input(...): Creates FeatureColumn objects for inputs defined by input x.

infer_real_valued_columns_from_input_fn(...): Creates FeatureColumn objects for inputs defined by input_fn.

io module: Tools to allow different io formats.

models module: Various high level TF models.

monitors module: Monitors instrument the training process.

ops module: Various TensorFlow Ops.

preprocessing module: Preprocessing tools useful for building models.

read_batch_examples(...): Adds operations to read, queue, batch Example protos.

read_batch_features(...): Adds operations to read, queue, batch and parse Example protos.

read_batch_record_features(...): Reads TFRecord, queues, batches and parses Example proto.

run_feeds(...): See run_feeds_iter(). Returns a list instead of an iterator. (deprecated)

run_n(...): Run output_dict tensors n times, with the same feed_dict each run. (deprecated)

train(...): Train a model. (deprecated)

utils module: TensorFlow Learn Utils.

Defined in tensorflow/contrib/learn/__init__.py.

© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/learn