tf.contrib.learn
High level API for learning. See the Learn (contrib) guide.
class BaseEstimator
: Abstract BaseEstimator class to train and evaluate TensorFlow models.
class DNNClassifier
: A classifier for TensorFlow DNN models.
class DNNLinearCombinedClassifier
: A classifier for TensorFlow Linear and DNN joined training models.
class DNNLinearCombinedRegressor
: A regressor for TensorFlow Linear and DNN joined training models.
class DNNRegressor
: A regressor for TensorFlow DNN models.
class Estimator
: Estimator class is the basic TensorFlow model trainer/evaluator.
class Evaluable
: Interface for objects that are evaluatable by, e.g., Experiment
.
class Experiment
: Experiment is a class containing all information needed to train a model.
class KMeansClustering
: An Estimator fo rK-Means clustering.
class LinearClassifier
: Linear classifier model.
class LinearRegressor
: Linear regressor model.
LogisticRegressor(...)
: Builds a logistic regression Estimator for binary classification.
class MetricSpec
: MetricSpec connects a model to metric functions.
class ModeKeys
: Standard names for model modes.
class ModelFnOps
: Ops returned from a model_fn.
class NanLossDuringTrainingError
class NotFittedError
: Exception class to raise if estimator is used before fitting.
class RunConfig
: This class specifies the configurations for an Estimator
run.
class Trainable
: Interface for objects that are trainable by, e.g., Experiment
.
build_parsing_serving_input_fn(...)
: Build an input_fn appropriate for serving, expecting fed tf.Examples.
datasets
module: Dataset utilities and synthetic/reference datasets.
evaluate(...)
: Evaluate a model loaded from a checkpoint. (deprecated)
extract_dask_data(...)
: Extract data from dask.Series or dask.DataFrame for predictors.
extract_dask_labels(...)
: Extract data from dask.Series or dask.DataFrame for labels.
extract_pandas_data(...)
: Extract data from pandas.DataFrame for predictors.
extract_pandas_labels(...)
: Extract data from pandas.DataFrame for labels.
extract_pandas_matrix(...)
: Extracts numpy matrix from pandas DataFrame.
graph_actions
module: High level operations on graphs.
head
module: Abstractions for the head(s) of a model.
infer(...)
: Restore graph from restore_checkpoint_path
and run output_dict
tensors. (deprecated)
infer_real_valued_columns_from_input(...)
: Creates FeatureColumn
objects for inputs defined by input x
.
infer_real_valued_columns_from_input_fn(...)
: Creates FeatureColumn
objects for inputs defined by input_fn
.
io
module: Tools to allow different io formats.
models
module: Various high level TF models.
monitors
module: Monitors instrument the training process.
ops
module: Various TensorFlow Ops.
preprocessing
module: Preprocessing tools useful for building models.
read_batch_examples(...)
: Adds operations to read, queue, batch Example
protos.
read_batch_features(...)
: Adds operations to read, queue, batch and parse Example
protos.
read_batch_record_features(...)
: Reads TFRecord, queues, batches and parses Example
proto.
run_feeds(...)
: See run_feeds_iter(). Returns a list
instead of an iterator. (deprecated)
run_n(...)
: Run output_dict
tensors n
times, with the same feed_dict
each run. (deprecated)
train(...)
: Train a model. (deprecated)
utils
module: TensorFlow Learn Utils.
Defined in tensorflow/contrib/learn/__init__.py
.
© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/learn