tf.contrib
contrib module containing volatile or experimental code.
bayesflow
module: Ops for representing Bayesian computation.
compiler
module: A module for controlling the Tensorflow/XLA JIT compiler.
copy_graph
module: Functions to copy elements between graphs.
crf
module: Linear-chain CRF layer. See the CRF (contrib) guide.
cudnn_rnn
module: Ops for fused Cudnn RNN models.
deprecated
module: Non-core alias for the deprecated tf.X_summary ops.
distributions
module: Classes representing statistical distributions and ops for working with them.
factorization
module: Ops and modules related to factorization.
framework
module: Framework utilities. See the Framework (contrib) guide.
graph_editor
module: TensorFlow Graph Editor. See the Graph Editor (contrib) guide.
grid_rnn
module: GridRNN cells
image
module: ##Ops for image manipulation.
input_pipeline
module: Ops and modules related to input_pipeline.
integrate
module: Integration and ODE solvers. See the Integrate (contrib) guide.
labeled_tensor
module: Labels for TensorFlow.
layers
module: Ops for building neural network layers, regularizers, summaries, etc.
learn
module: High level API for learning. See the Learn (contrib) guide.
legacy_seq2seq
module: Deprecated library for creating sequence-to-sequence models in TensorFlow.
linalg
module: Linear algebra libraries. See the Linear Algebra (contrib) guide.
linear_optimizer
module: Ops for training linear models.
lookup
module: Ops for lookup operations.
losses
module: Ops for building neural network losses. See Losses (contrib).
metrics
module: Ops for evaluation metrics and summary statistics.
ndlstm
module: Init file, giving convenient access to all ndlstm ops.
nn
module: Module for deprecated ops in tf.nn.
opt
module: A module containing optimization routines.
quantization
module: Ops for building quantized models.
rnn
module: RNN Cells and additional RNN operations. See RNN and Cells (contrib) guide.
seq2seq
module: Ops for building neural network seq2seq decoders and losses.
session_bundle
module
slim
module: Slim is an interface to contrib functions, examples and models.
solvers
module: Ops for representing Bayesian computation.
specs
module: Init file, giving convenient access to all specs ops.
stat_summarizer
module: Exposes the Python wrapper for StatSummarizer utility class.
tensor_forest
module: Random forest implementation in tensorflow.
tensorboard
module: tensorboard module containing volatile or experimental code.
testing
module: Testing utilities.
tfprof
module: tfprof is a tool that profile various aspect of TensorFlow model.
training
module: Training and input utilities. See Training (contrib) guide.
util
module: Utilities for dealing with Tensors. See Utilities (contrib) guide.
Defined in tensorflow/contrib/__init__.py
.
© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib