#include <math_ops.h>
Compute the cumulative product of the tensor x along axis.
By default, this op performs an inclusive cumprod, which means that the first element of the input is identical to the first element of the output: ```prettyprint tf.cumprod([a, b, c]) ==> [a, a * b, a * b * c] ```
By setting the exclusive kwarg to True, an exclusive cumprod is performed instead: ```prettyprint tf.cumprod([a, b, c], exclusive=True) ==> [0, a, a * b] ```
By setting the reverse kwarg to True, the cumprod is performed in the opposite direction: ```prettyprint tf.cumprod([a, b, c], reverse=True) ==> [a * b * c, b * c, c] `` This is more efficient than using separatetf.reverse` ops.
The reverse and exclusive kwargs can also be combined: ```prettyprint tf.cumprod([a, b, c], exclusive=True, reverse=True) ==> [b * c, c, 0] ```
Arguments:
Returns:
Output: The out tensor. | Constructors and Destructors | |
|---|---|
Cumprod(const ::tensorflow::Scope & scope, ::tensorflow::Input x, ::tensorflow::Input axis) | |
Cumprod(const ::tensorflow::Scope & scope, ::tensorflow::Input x, ::tensorflow::Input axis, const Cumprod::Attrs & attrs) |
| Public attributes | |
|---|---|
out | |
| Public functions | |
|---|---|
node() const | ::tensorflow::Node * |
operator::tensorflow::Input() const | |
operator::tensorflow::Output() const | |
| Public static functions | |
|---|---|
Exclusive(bool x) | |
Reverse(bool x) | |
| Structs | |
|---|---|
| tensorflow::ops::Cumprod::Attrs | Optional attribute setters for Cumprod. |
::tensorflow::Output out
Cumprod( const ::tensorflow::Scope & scope, ::tensorflow::Input x, ::tensorflow::Input axis )
Cumprod( const ::tensorflow::Scope & scope, ::tensorflow::Input x, ::tensorflow::Input axis, const Cumprod::Attrs & attrs )
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Output() const
Attrs Exclusive( bool x )
Attrs Reverse( bool x )
© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/cc/class/tensorflow/ops/cumprod.html