tf.train
Support for training models. See the Training guide.
class AdadeltaOptimizer
: Optimizer that implements the Adadelta algorithm.
class AdagradDAOptimizer
: Adagrad Dual Averaging algorithm for sparse linear models.
class AdagradOptimizer
: Optimizer that implements the Adagrad algorithm.
class AdamOptimizer
: Optimizer that implements the Adam algorithm.
class CheckpointSaverHook
: Saves checkpoints every N steps or seconds.
class ChiefSessionCreator
: Creates a tf.Session for a chief.
class ClusterSpec
: Represents a cluster as a set of "tasks", organized into "jobs".
class Coordinator
: A coordinator for threads.
class ExponentialMovingAverage
: Maintains moving averages of variables by employing an exponential decay.
class FtrlOptimizer
: Optimizer that implements the FTRL algorithm.
class GlobalStepWaiterHook
: Delay execution until global step reaches to wait_until_step.
class GradientDescentOptimizer
: Optimizer that implements the gradient descent algorithm.
class LoggingTensorHook
: Prints the given tensors once every N local steps or once every N seconds.
class LooperThread
: A thread that runs code repeatedly, optionally on a timer.
class MomentumOptimizer
: Optimizer that implements the Momentum algorithm.
class MonitoredSession
: Session-like object that handles initialization, recovery and hooks.
MonitoredTrainingSession(...)
: Creates a MonitoredSession
for training.
class NanLossDuringTrainingError
class NanTensorHook
: NaN Loss monitor.
class Optimizer
: Base class for optimizers.
class ProximalAdagradOptimizer
: Optimizer that implements the Proximal Adagrad algorithm.
class ProximalGradientDescentOptimizer
: Optimizer that implements the proximal gradient descent algorithm.
class QueueRunner
: Holds a list of enqueue operations for a queue, each to be run in a thread.
class RMSPropOptimizer
: Optimizer that implements the RMSProp algorithm.
class Saver
: Saves and restores variables.
class Scaffold
: Structure to create or gather pieces commonly needed to train a model.
class Server
: An in-process TensorFlow server, for use in distributed training.
class SessionCreator
: A factory for tf.Session.
class SessionManager
: Training helper that restores from checkpoint and creates session.
class SessionRunArgs
: Represents arguments to be added to a Session.run()
call.
class SessionRunContext
: Provides information about the session.run()
call being made.
class SessionRunHook
: Hook to extend calls to MonitoredSession.run().
class SessionRunValues
: Contains the results of Session.run()
.
class SingularMonitoredSession
: Session-like object that handles initialization, restoring, and hooks.
class StepCounterHook
: Steps per second monitor.
class StopAtStepHook
: Monitor to request stop at a specified step.
class SummarySaverHook
: Saves summaries every N steps.
class Supervisor
: A training helper that checkpoints models and computes summaries.
class SyncReplicasOptimizer
: Class to synchronize, aggregate gradients and pass them to the optimizer.
class WorkerSessionCreator
: Creates a tf.Session for a worker.
add_queue_runner(...)
: Adds a QueueRunner
to a collection in the graph.
assert_global_step(...)
: Asserts global_step_tensor
is a scalar int Variable
or Tensor
.
basic_train_loop(...)
: Basic loop to train a model.
batch(...)
: Creates batches of tensors in tensors
.
batch_join(...)
: Runs a list of tensors to fill a queue to create batches of examples.
checkpoint_exists(...)
: Checks whether a V1 or V2 checkpoint exists with the specified prefix.
do_quantize_training_on_graphdef(...)
exponential_decay(...)
: Applies exponential decay to the learning rate.
export_meta_graph(...)
: Returns MetaGraphDef
proto. Optionally writes it to filename.
generate_checkpoint_state_proto(...)
: Generates a checkpoint state proto.
get_checkpoint_mtimes(...)
: Returns the mtimes (modification timestamps) of the checkpoints.
get_checkpoint_state(...)
: Returns CheckpointState proto from the "checkpoint" file.
get_global_step(...)
: Get the global step tensor.
global_step(...)
: Small helper to get the global step.
import_meta_graph(...)
: Recreates a Graph saved in a MetaGraphDef
proto.
input_producer(...)
: Output the rows of input_tensor
to a queue for an input pipeline.
inverse_time_decay(...)
: Applies inverse time decay to the initial learning rate.
latest_checkpoint(...)
: Finds the filename of latest saved checkpoint file.
limit_epochs(...)
: Returns tensor num_epochs
times and then raises an OutOfRange
error.
match_filenames_once(...)
: Save the list of files matching pattern, so it is only computed once.
maybe_batch(...)
: Conditionally creates batches of tensors based on keep_input
.
maybe_batch_join(...)
: Runs a list of tensors to conditionally fill a queue to create batches.
maybe_shuffle_batch(...)
: Creates batches by randomly shuffling conditionally-enqueued tensors.
maybe_shuffle_batch_join(...)
: Create batches by randomly shuffling conditionally-enqueued tensors.
natural_exp_decay(...)
: Applies natural exponential decay to the initial learning rate.
piecewise_constant(...)
: Piecewise constant from boundaries and interval values.
polynomial_decay(...)
: Applies a polynomial decay to the learning rate.
queue_runner
module: Create threads to run multiple enqueue ops.
range_input_producer(...)
: Produces the integers from 0 to limit-1 in a queue.
replica_device_setter(...)
: Return a device function
to use when building a Graph for replicas.
shuffle_batch(...)
: Creates batches by randomly shuffling tensors.
shuffle_batch_join(...)
: Create batches by randomly shuffling tensors.
slice_input_producer(...)
: Produces a slice of each Tensor
in tensor_list
.
start_queue_runners(...)
: Starts all queue runners collected in the graph.
string_input_producer(...)
: Output strings (e.g. filenames) to a queue for an input pipeline.
summary_iterator(...)
: An iterator for reading Event
protocol buffers from an event file.
update_checkpoint_state(...)
: Updates the content of the 'checkpoint' file.
write_graph(...)
: Writes a graph proto to a file.
Defined in tensorflow/python/training/training.py
.
© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/train