tf.sparse_transpose(sp_input, perm=None, name=None)
See the guide: Sparse Tensors > Manipulation
Transposes a SparseTensor
The returned tensor's dimension i will correspond to the input dimension perm[i]
. If perm
is not given, it is set to (n-1...0), where n is the rank of the input tensor. Hence by default, this operation performs a regular matrix transpose on 2-D input Tensors.
For example, if sp_input
has shape [4, 5]
and indices
/ values
:
[0, 3]: b [0, 1]: a [3, 1]: d [2, 0]: c
then the output will be a SparseTensor
of shape [5, 4]
and indices
/ values
:
[0, 2]: c [1, 0]: a [1, 3]: d [3, 0]: b
sp_input
: The input SparseTensor
.perm
: A permutation of the dimensions of sp_input
.name
: A name prefix for the returned tensors (optional) Returns: A transposed SparseTensor
.TypeError
: If sp_input
is not a SparseTensor
.Defined in tensorflow/python/ops/sparse_ops.py
.
© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/sparse_transpose