tf.required_space_to_batch_paddings(input_shape, block_shape, base_paddings=None, name=None)
See the guide: Tensor Transformations > Slicing and Joining
Calculate padding required to make block_shape divide input_shape.
This function can be used to calculate a suitable paddings argument for use with space_to_batch_nd and batch_to_space_nd.
input_shape
: int32 Tensor of shape [N].block_shape
: int32 Tensor of shape [N].base_paddings
: Optional int32 Tensor of shape [N, 2]. Specifies the minimum amount of padding to use. All elements must be >= 0. If not specified, defaults to 0.name
: string. Optional name prefix.(paddings, crops), where:
paddings
and crops
are int32 Tensors of rank 2 and shape [N, 2] satisfying:
paddings[i, 0] = base_paddings[i, 0]. 0 <= paddings[i, 1] - base_paddings[i, 1] < block_shape[i] (input_shape[i] + paddings[i, 0] + paddings[i, 1]) % block_shape[i] == 0 crops[i, 0] = 0 crops[i, 1] = paddings[i, 1] - base_paddings[i, 1]
Raises: ValueError if called with incompatible shapes.
Defined in tensorflow/python/ops/array_ops.py
.
© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/required_space_to_batch_paddings