tf.quantized_concat(concat_dim, values, input_mins, input_maxes, name=None)See the guide: Tensor Transformations > Slicing and Joining
Concatenates quantized tensors along one dimension.
concat_dim: A Tensor of type int32. 0-D. The dimension along which to concatenate. Must be in the range [0, rank(values)).values: A list of at least 2 Tensor objects of the same type. The N Tensors to concatenate. Their ranks and types must match, and their sizes must match in all dimensions except concat_dim.input_mins: A list with the same number of Tensor objects as values of Tensor objects of type float32. The minimum scalar values for each of the input tensors.input_maxes: A list with the same number of Tensor objects as values of Tensor objects of type float32. The maximum scalar values for each of the input tensors.name: A name for the operation (optional).A tuple of Tensor objects (output, output_min, output_max). output: A Tensor. Has the same type as values. A Tensor with the concatenation of values stacked along the
concat_dim dimension. This tensor's shape matches that of values except in concat_dim where it has the sum of the sizes. output_min: A Tensor of type float32. The float value that the minimum quantized output value represents. * output_max: A Tensor of type float32. The float value that the maximum quantized output value represents.
Defined in tensorflow/python/ops/gen_array_ops.py.
© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/quantized_concat