tf.one_hot(indices, depth, on_value=None, off_value=None, axis=None, dtype=None, name=None)
See the guide: Tensor Transformations > Slicing and Joining
Returns a one-hot tensor.
The locations represented by indices in indices
take value on_value
, while all other locations take value off_value
.
on_value
and off_value
must have matching data types. If dtype
is also provided, they must be the same data type as specified by dtype
.
If on_value
is not provided, it will default to the value 1
with type dtype
If off_value
is not provided, it will default to the value 0
with type dtype
If the input indices
is rank N
, the output will have rank N+1
. The new axis is created at dimension axis
(default: the new axis is appended at the end).
If indices
is a scalar the output shape will be a vector of length depth
If indices
is a vector of length features
, the output shape will be:
features x depth if axis == -1 depth x features if axis == 0
If indices
is a matrix (batch) with shape [batch, features]
, the output shape will be:
batch x features x depth if axis == -1 batch x depth x features if axis == 1 depth x batch x features if axis == 0
If dtype
is not provided, it will attempt to assume the data type of on_value
or off_value
, if one or both are passed in. If none of on_value
, off_value
, or dtype
are provided, dtype
will default to the value tf.float32
.
Note: If a non-numeric data type output is desired (tf.string
,tf.bool
, etc.), bothon_value
andoff_value
must be provided toone_hot
.
Suppose that
indices = [0, 2, -1, 1] depth = 3 on_value = 5.0 off_value = 0.0 axis = -1
Then output is [4 x 3]
:
output = [5.0 0.0 0.0] // one_hot(0) [0.0 0.0 5.0] // one_hot(2) [0.0 0.0 0.0] // one_hot(-1) [0.0 5.0 0.0] // one_hot(1)
Suppose that
indices = [[0, 2], [1, -1]] depth = 3 on_value = 1.0 off_value = 0.0 axis = -1
Then output is [2 x 2 x 3]
:
output = [ [1.0, 0.0, 0.0] // one_hot(0) [0.0, 0.0, 1.0] // one_hot(2) ][ [0.0, 1.0, 0.0] // one_hot(1) [0.0, 0.0, 0.0] // one_hot(-1) ]
Using default values for on_value
and off_value
:
indices = [0, 1, 2] depth = 3
The output will be
output = [[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]
indices
: A Tensor
of indices.depth
: A scalar defining the depth of the one hot dimension.on_value
: A scalar defining the value to fill in output when indices[j] = i
. (default: 1)off_value
: A scalar defining the value to fill in output when indices[j] != i
. (default: 0)axis
: The axis to fill (default: -1, a new inner-most axis).dtype
: The data type of the output tensor.output
: The one-hot tensor.TypeError
: If dtype of either on_value
or off_value
don't match dtype
TypeError
: If dtype of on_value
and off_value
don't match one anotherDefined in tensorflow/python/ops/array_ops.py
.
© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/one_hot