tf.layers.separable_conv2d(inputs, filters, kernel_size, strides=(1, 1), padding='valid', data_format='channels_last', dilation_rate=(1, 1), depth_multiplier=1, activation=None, use_bias=True, depthwise_initializer=None, pointwise_initializer=None, bias_initializer=tf.zeros_initializer(), depthwise_regularizer=None, pointwise_regularizer=None, bias_regularizer=None, activity_regularizer=None, trainable=True, name=None, reuse=None)
Functional interface for the depthwise separable 2D convolution layer.
This layer performs a depthwise convolution that acts separately on channels, followed by a pointwise convolution that mixes channels. If use_bias
is True and a bias initializer is provided, it adds a bias vector to the output. It then optionally applies an activation function to produce the final output.
inputs
: Input tensor.filters
: integer, the dimensionality of the output space (i.e. the number output of filters in the convolution).kernel_size
: a tuple or list of N positive integers specifying the spatial dimensions of of the filters. Can be a single integer to specify the same value for all spatial dimensions.strides
: a tuple or list of N positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride
value != 1 is incompatible with specifying any dilation_rate
value != 1.padding
: one of "valid"
or "same"
(case-insensitive).data_format
: A string, one of channels_last
(default) or channels_first
. The ordering of the dimensions in the inputs. channels_last
corresponds to inputs with shapedata_format = 'NWHC' (batch, width, height, channels)
while channels_first
corresponds to inputs with shape (batch, channels, width, height)
.dilation_rate
: an integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any dilation_rate
value != 1 is incompatible with specifying any stride value != 1.depth_multiplier
: The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to num_filters_in * depth_multiplier
.activation
: Activation function. Set it to None to maintain a linear activation.use_bias
: Boolean, whether the layer uses a bias.depthwise_initializer
: An initializer for the depthwise convolution kernel.pointwise_initializer
: An initializer for the pointwise convolution kernel.bias_initializer
: An initializer for the bias vector. If None, no bias will be applied.depthwise_regularizer
: Optional regularizer for the depthwise convolution kernel.pointwise_regularizer
: Optional regularizer for the pointwise convolution kernel.bias_regularizer
: Optional regularizer for the bias vector.activity_regularizer
: Regularizer function for the output.trainable
: Boolean, if True
also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES
(see tf.Variable).name
: A string, the name of the layer.reuse
: Boolean, whether to reuse the weights of a previous layer by the same name.Output tensor.
Defined in tensorflow/python/layers/convolutional.py
.
© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/layers/separable_conv2d