tf.layers.conv3d(inputs, filters, kernel_size, strides=(1, 1, 1), padding='valid', data_format='channels_last', dilation_rate=(1, 1, 1), activation=None, use_bias=True, kernel_initializer=None, bias_initializer=tf.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, trainable=True, name=None, reuse=None)
Functional interface for the 3D convolution layer.
This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If use_bias
is True (and a bias_initializer
is provided), a bias vector is created and added to the outputs. Finally, if activation
is not None
, it is applied to the outputs as well.
inputs
: Tensor input.filters
: integer, the dimensionality of the output space (i.e. the number output of filters in the convolution).kernel_size
: an integer or tuple/list of 3 integers, specifying the width and height of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions.strides
: an integer or tuple/list of 3 integers, specifying the strides of the convolution along the width and height. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any dilation_rate
value != 1.padding
: one of "valid"
or "same"
(case-insensitive).data_format
: A string, one of channels_last
(default) or channels_first
. The ordering of the dimensions in the inputs. channels_last
corresponds to inputs with shape (batch, width, height, channels)
while channels_first
corresponds to inputs with shape (batch, channels, width, height)
.dilation_rate
: an integer or tuple/list of 3 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any dilation_rate
value != 1 is incompatible with specifying any stride value != 1.activation
: Activation function. Set it to None to maintain a linear activation.use_bias
: Boolean, whether the layer uses a bias.kernel_initializer
: An initializer for the convolution kernel.bias_initializer
: An initializer for the bias vector. If None, no bias will be applied.kernel_regularizer
: Optional regularizer for the convolution kernel.bias_regularizer
: Optional regularizer for the bias vector.activity_regularizer
: Regularizer function for the output.trainable
: Boolean, if True
also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES
(see tf.Variable).name
: A string, the name of the layer.reuse
: Boolean, whether to reuse the weights of a previous layer by the same name.Output tensor.
Defined in tensorflow/python/layers/convolutional.py
.
© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/layers/conv3d