tf.histogram_fixed_width(values, value_range, nbins=100, dtype=tf.int32, name=None)
See the guide: Histograms > Histograms
Return histogram of values.
Given the tensor values
, this operation returns a rank 1 histogram counting the number of entries in values
that fell into every bin. The bins are equal width and determined by the arguments value_range
and nbins
.
values
: Numeric Tensor
.value_range
: Shape [2] Tensor
. new_values <= value_range[0] will be mapped to hist[0], values >= value_range[1] will be mapped to hist[-1]. Must be same dtype as new_values.nbins
: Scalar int32 Tensor
. Number of histogram bins.dtype
: dtype for returned histogram.name
: A name for this operation (defaults to 'histogram_fixed_width').A 1-D Tensor
holding histogram of values.
Examples:
# Bins will be: (-inf, 1), [1, 2), [2, 3), [3, 4), [4, inf) nbins = 5 value_range = [0.0, 5.0] new_values = [-1.0, 0.0, 1.5, 2.0, 5.0, 15] with tf.default_session() as sess: hist = tf.histogram_fixed_width(new_values, value_range, nbins=5) variables.global_variables_initializer().run() sess.run(hist) => [2, 1, 1, 0, 2]
Defined in tensorflow/python/ops/histogram_ops.py
.
© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/histogram_fixed_width