class tf.Graph
See the guide: Building Graphs > Core graph data structures
A TensorFlow computation, represented as a dataflow graph.
A Graph
contains a set of tf.Operation
objects, which represent units of computation; and tf.Tensor
objects, which represent the units of data that flow between operations.
A default Graph
is always registered, and accessible by calling tf.get_default_graph
. To add an operation to the default graph, simply call one of the functions that defines a new Operation
:
c = tf.constant(4.0) assert c.graph is tf.get_default_graph()
Another typical usage involves the tf.Graph.as_default
context manager, which overrides the current default graph for the lifetime of the context:
g = tf.Graph() with g.as_default(): # Define operations and tensors in `g`. c = tf.constant(30.0) assert c.graph is g
Important note: This class is not thread-safe for graph construction. All operations should be created from a single thread, or external synchronization must be provided. Unless otherwise specified, all methods are not thread-safe.
A Graph
instance supports an arbitrary number of "collections" that are identified by name. For convenience when building a large graph, collections can store groups of related objects: for example, the tf.Variable
uses a collection (named tf.GraphKeys.GLOBAL_VARIABLES
) for all variables that are created during the construction of a graph. The caller may define additional collections by specifying a new name.
building_function
Returns True iff this graph represents a function.
finalized
True if this graph has been finalized.
graph_def_versions
The GraphDef version information of this graph.
For details on the meaning of each version, see GraphDef
.
A VersionDef
.
seed
The graph-level random seed of this graph.
version
Returns a version number that increases as ops are added to the graph.
Note that this is unrelated to the tf.Graph.graph_def_versions
.
__init__()
Creates a new, empty Graph.
add_to_collection(name, value)
Stores value
in the collection with the given name
.
Note that collections are not sets, so it is possible to add a value to a collection several times.
name
: The key for the collection. The GraphKeys
class contains many standard names for collections.value
: The value to add to the collection.add_to_collections(names, value)
Stores value
in the collections given by names
.
Note that collections are not sets, so it is possible to add a value to a collection several times. This function makes sure that duplicates in names
are ignored, but it will not check for pre-existing membership of value
in any of the collections in names
.
names
can be any iterable, but if names
is a string, it is treated as a single collection name.
names
: The keys for the collections to add to. The GraphKeys
class contains many standard names for collections.value
: The value to add to the collections.as_default()
Returns a context manager that makes this Graph
the default graph.
This method should be used if you want to create multiple graphs in the same process. For convenience, a global default graph is provided, and all ops will be added to this graph if you do not create a new graph explicitly. Use this method with the with
keyword to specify that ops created within the scope of a block should be added to this graph.
The default graph is a property of the current thread. If you create a new thread, and wish to use the default graph in that thread, you must explicitly add a with g.as_default():
in that thread's function.
The following code examples are equivalent:
# 1. Using Graph.as_default(): g = tf.Graph() with g.as_default(): c = tf.constant(5.0) assert c.graph is g # 2. Constructing and making default: with tf.Graph().as_default() as g: c = tf.constant(5.0) assert c.graph is g
A context manager for using this graph as the default graph.
as_graph_def(from_version=None, add_shapes=False)
Returns a serialized GraphDef
representation of this graph.
The serialized GraphDef
can be imported into another Graph
(using tf.import_graph_def
) or used with the C++ Session API.
This method is thread-safe.
from_version
: Optional. If this is set, returns a GraphDef
containing only the nodes that were added to this graph since its version
property had the given value.add_shapes
: If true, adds an "_output_shapes" list attr to each node with the inferred shapes of each of its outputs.A GraphDef
protocol buffer.
ValueError
: If the graph_def
would be too large.as_graph_element(obj, allow_tensor=True, allow_operation=True)
Returns the object referred to by obj
, as an Operation
or Tensor
.
This function validates that obj
represents an element of this graph, and gives an informative error message if it is not.
This function is the canonical way to get/validate an object of one of the allowed types from an external argument reference in the Session API.
This method may be called concurrently from multiple threads.
obj
: A Tensor
, an Operation
, or the name of a tensor or operation. Can also be any object with an _as_graph_element()
method that returns a value of one of these types.allow_tensor
: If true, obj
may refer to a Tensor
.allow_operation
: If true, obj
may refer to an Operation
.The Tensor
or Operation
in the Graph corresponding to obj
.
TypeError
: If obj
is not a type we support attempting to convert to types.ValueError
: If obj
is of an appropriate type but invalid. For example, an invalid string.KeyError
: If obj
is not an object in the graph.clear_collection(name)
Clears all values in a collection.
name
: The key for the collection. The GraphKeys
class contains many standard names for collections.colocate_with(*args, **kwds)
Returns a context manager that specifies an op to colocate with.
Note: this function is not for public use, only for internal libraries.
For example:
a = tf.Variable([1.0]) with g.colocate_with(a): b = tf.constant(1.0) c = tf.add(a, b)
b
and c
will always be colocated with a
, no matter where a
is eventually placed.
NOTE Using a colocation scope resets any existing device constraints.
If op
is None
then ignore_existing
must be True
and the new scope resets all colocation and device constraints.
op
: The op to colocate all created ops with, or None
.ignore_existing
: If true, only applies colocation of this op within the context, rather than applying all colocation properties on the stack. If op
is None
, this value must be True
.ValueError
: if op is None but ignore_existing is False.A context manager that specifies the op with which to colocate newly created ops.
container(*args, **kwds)
Returns a context manager that specifies the resource container to use.
Stateful operations, such as variables and queues, can maintain their states on devices so that they can be shared by multiple processes. A resource container is a string name under which these stateful operations are tracked. These resources can be released or cleared with tf.Session.reset()
.
For example:
with g.container('experiment0'): # All stateful Operations constructed in this context will be placed # in resource container "experiment0". v1 = tf.Variable([1.0]) v2 = tf.Variable([2.0]) with g.container("experiment1"): # All stateful Operations constructed in this context will be # placed in resource container "experiment1". v3 = tf.Variable([3.0]) q1 = tf.FIFOQueue(10, tf.float32) # All stateful Operations constructed in this context will be # be created in the "experiment0". v4 = tf.Variable([4.0]) q1 = tf.FIFOQueue(20, tf.float32) with g.container(""): # All stateful Operations constructed in this context will be # be placed in the default resource container. v5 = tf.Variable([5.0]) q3 = tf.FIFOQueue(30, tf.float32) # Resets container "experiment0", after which the state of v1, v2, v4, q1 # will become undefined (such as uninitialized). tf.Session.reset(target, ["experiment0"])
container_name
: container name string.A context manager for defining resource containers for stateful ops, yields the container name.
control_dependencies(control_inputs)
Returns a context manager that specifies control dependencies.
Use with the with
keyword to specify that all operations constructed within the context should have control dependencies on control_inputs
. For example:
with g.control_dependencies([a, b, c]): # `d` and `e` will only run after `a`, `b`, and `c` have executed. d = ... e = ...
Multiple calls to control_dependencies()
can be nested, and in that case a new Operation
will have control dependencies on the union of control_inputs
from all active contexts.
with g.control_dependencies([a, b]): # Ops constructed here run after `a` and `b`. with g.control_dependencies([c, d]): # Ops constructed here run after `a`, `b`, `c`, and `d`.
You can pass None to clear the control dependencies:
with g.control_dependencies([a, b]): # Ops constructed here run after `a` and `b`. with g.control_dependencies(None): # Ops constructed here run normally, not waiting for either `a` or `b`. with g.control_dependencies([c, d]): # Ops constructed here run after `c` and `d`, also not waiting # for either `a` or `b`.
N.B. The control dependencies context applies only to ops that are constructed within the context. Merely using an op or tensor in the context does not add a control dependency. The following example illustrates this point:
# WRONG def my_func(pred, tensor): t = tf.matmul(tensor, tensor) with tf.control_dependencies([pred]): # The matmul op is created outside the context, so no control # dependency will be added. return t # RIGHT def my_func(pred, tensor): with tf.control_dependencies([pred]): # The matmul op is created in the context, so a control dependency # will be added. return tf.matmul(tensor, tensor)
control_inputs
: A list of Operation
or Tensor
objects which must be executed or computed before running the operations defined in the context. Can also be None
to clear the control dependencies.Returns: A context manager that specifies control dependencies for all operations constructed within the context.
TypeError
: If control_inputs
is not a list of Operation
or Tensor
objects.create_op(op_type, inputs, dtypes, input_types=None, name=None, attrs=None, op_def=None, compute_shapes=True, compute_device=True)
Creates an Operation
in this graph.
This is a low-level interface for creating an Operation
. Most programs will not call this method directly, and instead use the Python op constructors, such as tf.constant()
, which add ops to the default graph.
op_type
: The Operation
type to create. This corresponds to the OpDef.name
field for the proto that defines the operation.inputs
: A list of Tensor
objects that will be inputs to the Operation
.dtypes
: A list of DType
objects that will be the types of the tensors that the operation produces.input_types
: (Optional.) A list of DType
s that will be the types of the tensors that the operation consumes. By default, uses the base DType
of each input in inputs
. Operations that expect reference-typed inputs must specify input_types
explicitly.name
: (Optional.) A string name for the operation. If not specified, a name is generated based on op_type
.attrs
: (Optional.) A dictionary where the key is the attribute name (a string) and the value is the respective attr
attribute of the NodeDef
proto that will represent the operation (an AttrValue
proto).op_def
: (Optional.) The OpDef
proto that describes the op_type
that the operation will have.compute_shapes
: (Optional.) If True, shape inference will be performed to compute the shapes of the outputs.compute_device
: (Optional.) If True, device functions will be executed to compute the device property of the Operation.TypeError
: if any of the inputs is not a Tensor
.ValueError
: if colocation conflicts with existing device assignment.An Operation
object.
device(*args, **kwds)
Returns a context manager that specifies the default device to use.
The device_name_or_function
argument may either be a device name string, a device function, or None:
device()
context.device()
invocations from the enclosing context will be ignored.For information about the valid syntax of device name strings, see the documentation in DeviceNameUtils
.
For example:
with g.device('/gpu:0'): # All operations constructed in this context will be placed # on GPU 0. with g.device(None): # All operations constructed in this context will have no # assigned device. # Defines a function from `Operation` to device string. def matmul_on_gpu(n): if n.type == "MatMul": return "/gpu:0" else: return "/cpu:0" with g.device(matmul_on_gpu): # All operations of type "MatMul" constructed in this context # will be placed on GPU 0; all other operations will be placed # on CPU 0.
N.B. The device scope may be overridden by op wrappers or other library code. For example, a variable assignment op v.assign()
must be colocated with the tf.Variable
v
, and incompatible device scopes will be ignored.
device_name_or_function
: The device name or function to use in the context.A context manager that specifies the default device to use for newly created ops.
finalize()
Finalizes this graph, making it read-only.
After calling g.finalize()
, no new operations can be added to g
. This method is used to ensure that no operations are added to a graph when it is shared between multiple threads, for example when using a tf.train.QueueRunner
.
get_all_collection_keys()
Returns a list of collections used in this graph.
get_collection(name, scope=None)
Returns a list of values in the collection with the given name
.
This is different from get_collection_ref()
which always returns the actual collection list if it exists in that it returns a new list each time it is called.
name
: The key for the collection. For example, the GraphKeys
class contains many standard names for collections.scope
: (Optional.) If supplied, the resulting list is filtered to include only items whose name
attribute matches using re.match
. Items without a name
attribute are never returned if a scope is supplied and the choice or re.match
means that a scope
without special tokens filters by prefix.The list of values in the collection with the given name
, or an empty list if no value has been added to that collection. The list contains the values in the order under which they were collected.
get_collection_ref(name)
Returns a list of values in the collection with the given name
.
If the collection exists, this returns the list itself, which can be modified in place to change the collection. If the collection does not exist, it is created as an empty list and the list is returned.
This is different from get_collection()
which always returns a copy of the collection list if it exists and never creates an empty collection.
name
: The key for the collection. For example, the GraphKeys
class contains many standard names for collections.The list of values in the collection with the given name
, or an empty list if no value has been added to that collection.
get_operation_by_name(name)
Returns the Operation
with the given name
.
This method may be called concurrently from multiple threads.
name
: The name of the Operation
to return.The Operation
with the given name
.
TypeError
: If name
is not a string.KeyError
: If name
does not correspond to an operation in this graph.get_operations()
Return the list of operations in the graph.
You can modify the operations in place, but modifications to the list such as inserts/delete have no effect on the list of operations known to the graph.
This method may be called concurrently from multiple threads.
A list of Operations.
get_tensor_by_name(name)
Returns the Tensor
with the given name
.
This method may be called concurrently from multiple threads.
name
: The name of the Tensor
to return.The Tensor
with the given name
.
TypeError
: If name
is not a string.KeyError
: If name
does not correspond to a tensor in this graph.gradient_override_map(*args, **kwds)
EXPERIMENTAL: A context manager for overriding gradient functions.
This context manager can be used to override the gradient function that will be used for ops within the scope of the context.
For example:
@tf.RegisterGradient("CustomSquare") def _custom_square_grad(op, grad): # ... with tf.Graph().as_default() as g: c = tf.constant(5.0) s_1 = tf.square(c) # Uses the default gradient for tf.square. with g.gradient_override_map({"Square": "CustomSquare"}): s_2 = tf.square(s_2) # Uses _custom_square_grad to compute the # gradient of s_2.
op_type_map
: A dictionary mapping op type strings to alternative op type strings.A context manager that sets the alternative op type to be used for one or more ops created in that context.
TypeError
: If op_type_map
is not a dictionary mapping strings to strings.is_feedable(tensor)
Returns True
if and only if tensor
is feedable.
is_fetchable(tensor_or_op)
Returns True
if and only if tensor_or_op
is fetchable.
name_scope(*args, **kwds)
Returns a context manager that creates hierarchical names for operations.
A graph maintains a stack of name scopes. A with name_scope(...):
statement pushes a new name onto the stack for the lifetime of the context.
The name
argument will be interpreted as follows:
name
is appended to the prefix of all operations created in the context. If name
has been used before, it will be made unique by calling self.unique_name(name)
.with g.name_scope(...) as scope:
statement will be treated as an "absolute" name scope, which makes it possible to re-enter existing scopes.None
or the empty string will reset the current name scope to the top-level (empty) name scope.For example:
with tf.Graph().as_default() as g: c = tf.constant(5.0, name="c") assert c.op.name == "c" c_1 = tf.constant(6.0, name="c") assert c_1.op.name == "c_1" # Creates a scope called "nested" with g.name_scope("nested") as scope: nested_c = tf.constant(10.0, name="c") assert nested_c.op.name == "nested/c" # Creates a nested scope called "inner". with g.name_scope("inner"): nested_inner_c = tf.constant(20.0, name="c") assert nested_inner_c.op.name == "nested/inner/c" # Create a nested scope called "inner_1". with g.name_scope("inner"): nested_inner_1_c = tf.constant(30.0, name="c") assert nested_inner_1_c.op.name == "nested/inner_1/c" # Treats `scope` as an absolute name scope, and # switches to the "nested/" scope. with g.name_scope(scope): nested_d = tf.constant(40.0, name="d") assert nested_d.op.name == "nested/d" with g.name_scope(""): e = tf.constant(50.0, name="e") assert e.op.name == "e"
The name of the scope itself can be captured by with g.name_scope(...) as scope:
, which stores the name of the scope in the variable scope
. This value can be used to name an operation that represents the overall result of executing the ops in a scope. For example:
inputs = tf.constant(...) with g.name_scope('my_layer') as scope: weights = tf.Variable(..., name="weights") biases = tf.Variable(..., name="biases") affine = tf.matmul(inputs, weights) + biases output = tf.nn.relu(affine, name=scope)
NOTE: This constructor validates the given name
. Valid scope names match one of the following regular expressions:
[A-Za-z0-9.][A-Za-z0-9_.\\-/]* (for scopes at the root) [A-Za-z0-9_.\\-/]* (for other scopes)
name
: A name for the scope.A context manager that installs name
as a new name scope.
ValueError
: If name
is not a valid scope name. The rules are theprevent_feeding(tensor)
Marks the given tensor
as unfeedable in this graph.
prevent_fetching(op)
Marks the given op
as unfetchable in this graph.
unique_name(name, mark_as_used=True)
Return a unique operation name for name
.
Note: You rarely need to callunique_name()
directly. Most of the time you just need to createwith g.name_scope()
blocks to generate structured names.
unique_name
is used to generate structured names, separated by "/"
, to help identify operations when debugging a graph. Operation names are displayed in error messages reported by the TensorFlow runtime, and in various visualization tools such as TensorBoard.
If mark_as_used
is set to True
, which is the default, a new unique name is created and marked as in use. If it's set to False
, the unique name is returned without actually being marked as used. This is useful when the caller simply wants to know what the name to be created will be.
name
: The name for an operation.mark_as_used
: Whether to mark this name as being used.A string to be passed to create_op()
that will be used to name the operation being created.
Defined in tensorflow/python/framework/ops.py
.
© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/Graph