tf.fake_quant_with_min_max_vars_gradient(gradients, inputs, min, max, name=None)
See the guide: Tensor Transformations > Fake quantization
Compute gradients for a FakeQuantWithMinMaxVars operation.
gradients
: A Tensor
of type float32
. Backpropagated gradients above the FakeQuantWithMinMaxVars operation.inputs
: A Tensor
of type float32
. Values passed as inputs to the FakeQuantWithMinMaxVars operation. min, max: Quantization interval, scalar floats.min
: A Tensor
of type float32
.max
: A Tensor
of type float32
.name
: A name for the operation (optional).A tuple of Tensor
objects (backprops_wrt_input, backprop_wrt_min, backprop_wrt_max). backprops_wrt_input
: A Tensor
of type float32
. Backpropagated gradients w.r.t. inputs:
gradients * (inputs >= min && inputs <= max)
. backprop_wrt_min
: A Tensor
of type float32
. Backpropagated gradients w.r.t. min parameter: sum(gradients * (inputs < min))
. * backprop_wrt_max
: A Tensor
of type float32
. Backpropagated gradients w.r.t. max parameter: sum(gradients * (inputs > max))
.
Defined in tensorflow/python/ops/gen_array_ops.py
.
© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/fake_quant_with_min_max_vars_gradient