tf.dynamic_stitch(indices, data, name=None)
See the guide: Tensor Transformations > Slicing and Joining
Interleave the values from the data
tensors into a single tensor.
Builds a merged tensor such that
merged[indices[m][i, ..., j], ...] = data[m][i, ..., j, ...]
For example, if each indices[m]
is scalar or vector, we have
# Scalar indices: merged[indices[m], ...] = data[m][...] # Vector indices: merged[indices[m][i], ...] = data[m][i, ...]
Each data[i].shape
must start with the corresponding indices[i].shape
, and the rest of data[i].shape
must be constant w.r.t. i
. That is, we must have data[i].shape = indices[i].shape + constant
. In terms of this constant
, the output shape is
merged.shape = [max(indices)] + constant
Values are merged in order, so if an index appears in both indices[m][i]
and indices[n][j]
for (m,i) < (n,j)
the slice data[n][j]
will appear in the merged result.
For example:
indices[0] = 6 indices[1] = [4, 1] indices[2] = [[5, 2], [0, 3]] data[0] = [61, 62] data[1] = [[41, 42], [11, 12]] data[2] = [[[51, 52], [21, 22]], [[1, 2], [31, 32]]] merged = [[1, 2], [11, 12], [21, 22], [31, 32], [41, 42], [51, 52], [61, 62]]
indices
: A list of at least 1 Tensor
objects of type int32
.data
: A list with the same number of Tensor
objects as indices
of Tensor
objects of the same type.name
: A name for the operation (optional).A Tensor
. Has the same type as data
.
Defined in tensorflow/python/ops/gen_data_flow_ops.py
.
© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/dynamic_stitch