class tf.contrib.rnn.GRUBlockCell
See the guide: RNN and Cells (contrib) > Core RNN Cell wrappers (RNNCells that wrap other RNNCells)
Block GRU cell implementation.
The implementation is based on: http://arxiv.org/abs/1406.1078 Computes the LSTM cell forward propagation for 1 time step.
This kernel op implements the following mathematical equations:
Biases are initialized with:
b_ru
- constant_initializer(1.0)b_c
- constant_initializer(0.0)x_h_prev = [x, h_prev] [r_bar u_bar] = x_h_prev * w_ru + b_ru r = sigmoid(r_bar) u = sigmoid(u_bar) h_prevr = h_prev \circ r x_h_prevr = [x h_prevr] c_bar = x_h_prevr * w_c + b_c c = tanh(c_bar) h = (1-u) \circ c + u \circ h_prev
output_size
state_size
__init__(cell_size)
Initialize the Block GRU cell.
cell_size
: int, GRU cell size.zero_state(batch_size, dtype)
Return zero-filled state tensor(s).
batch_size
: int, float, or unit Tensor representing the batch size.dtype
: the data type to use for the state.If state_size
is an int or TensorShape, then the return value is a N-D
tensor of shape [batch_size x state_size]
filled with zeros.
If state_size
is a nested list or tuple, then the return value is a nested list or tuple (of the same structure) of 2-D
tensors with the shapes [batch_size x s]
for each s in state_size
.
Defined in tensorflow/contrib/rnn/python/ops/gru_ops.py
.
© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/GRUBlockCell