tf.contrib.layers.sparse_column_with_keys(column_name, keys, default_value=-1, combiner=None)
See the guide: Layers (contrib) > Feature columns
Creates a _SparseColumn with keys.
Look up logic is as follows: lookup_id = index_of_feature_in_keys if feature in keys else default_value
column_name
: A string defining sparse column name.keys
: a string list defining vocabulary.default_value
: The value to use for out-of-vocabulary feature values. Default is -1.combiner
: A string specifying how to reduce if the sparse column is multivalent. Currently "mean", "sqrtn" and "sum" are supported, with "sum" the default:tf.embedding_lookup_sparse
.A _SparseColumnKeys with keys configuration.
Defined in tensorflow/contrib/layers/python/layers/feature_column.py
.
© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/layers/sparse_column_with_keys