tf.contrib.layers.shared_embedding_columns(sparse_id_columns, dimension, combiner=None, shared_embedding_name=None, initializer=None, ckpt_to_load_from=None, tensor_name_in_ckpt=None, max_norm=None)
See the guide: Layers (contrib) > Feature columns
Creates a list of _EmbeddingColumn
sharing the same embedding.
sparse_id_columns
: An iterable of _SparseColumn
, such as those created by sparse_column_with_*
or crossed_column functions. Note that combiner
defined in each sparse_id_column is ignored.dimension
: An integer specifying dimension of the embedding.combiner
: A string specifying how to reduce if there are multiple entries in a single row. Currently "mean", "sqrtn" and "sum" are supported. Each of this can be considered an example level normalization on the column:tf.embedding_lookup_sparse
.shared_embedding_name
: (Optional). A string specifying the name of shared embedding weights. This will be needed if you want to reference the shared embedding separately from the generated _EmbeddingColumn
.initializer
: A variable initializer function to be used in embedding variable initialization. If not specified, defaults to tf.truncated_normal_initializer
with mean 0.0 and standard deviation 1/sqrt(sparse_id_columns[0].length).ckpt_to_load_from
: (Optional). String representing checkpoint name/pattern to restore the column weights. Required if tensor_name_in_ckpt
is not None.tensor_name_in_ckpt
: (Optional). Name of the Tensor
in the provided checkpoint from which to restore the column weights. Required if ckpt_to_load_from
is not None.max_norm
: (Optional). If not None, embedding values are l2-normalized to the value of max_norm.A tuple of _EmbeddingColumn
with shared embedding space.
ValueError
: if sparse_id_columns is empty, or its elements are not compatible with each other.TypeError
: if sparse_id_columns
is not a sequence or is a string. If at least one element of sparse_id_columns
is not a SparseTensor
.Defined in tensorflow/contrib/layers/python/layers/feature_column.py
.
© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/layers/shared_embedding_columns