tf.contrib.layers.scattered_embedding_column(column_name, size, dimension, hash_key, combiner=None, initializer=None)
See the guide: Layers (contrib) > Feature columns
Creates an embedding column of a sparse feature using parameter hashing.
The i-th embedding component of a value v is found by retrieving an embedding weight whose index is a fingerprint of the pair (v,i).
An embedding column with sparse_column_with_hash_bucket such as embedding_column( sparse_column_with_hash_bucket(column_name, bucket_size), dimension)
could be replaced by scattered_embedding_column( column_name, size=bucket_size * dimension, dimension=dimension, hash_key=tf.contrib.layers.SPARSE_FEATURE_CROSS_DEFAULT_HASH_KEY)
for the same number of embedding parameters and hopefully reduced impact of collisions with a cost of slowing down training.
column_name
: A string defining sparse column name.size
: An integer specifying the number of parameters in the embedding layer.dimension
: An integer specifying dimension of the embedding.hash_key
: Specify the hash_key that will be used by the FingerprintCat64
function to combine the crosses fingerprints on SparseFeatureCrossOp.combiner
: A string specifying how to reduce if there are multiple entries in a single row. Currently "mean", "sqrtn" and "sum" are supported. Each of this can be thought as example level normalizations on the column:tf.embedding_lookup_sparse
.initializer
: A variable initializer function to be used in embedding variable initialization. If not specified, defaults to tf.truncated_normal_initializer
with mean 0 and standard deviation 0.1.A _ScatteredEmbeddingColumn.
ValueError
: if dimension or size is not a positive integer; or if combiner is not supported.Defined in tensorflow/contrib/layers/python/layers/feature_column.py
.
© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/layers/scattered_embedding_column