tf.contrib.layers.parse_feature_columns_from_examples(serialized, feature_columns, name=None, example_names=None)
See the guide: Layers (contrib) > Feature columns
Parses tf.Examples to extract tensors for given feature_columns.
This is a wrapper of 'tf.parse_example'.
Example:
columns_to_tensor = parse_feature_columns_from_examples( serialized=my_data, feature_columns=my_features) # Where my_features are: # Define features and transformations sparse_feature_a = sparse_column_with_keys( column_name="sparse_feature_a", keys=["AB", "CD", ...]) embedding_feature_a = embedding_column( sparse_id_column=sparse_feature_a, dimension=3, combiner="sum") sparse_feature_b = sparse_column_with_hash_bucket( column_name="sparse_feature_b", hash_bucket_size=1000) embedding_feature_b = embedding_column( sparse_id_column=sparse_feature_b, dimension=16, combiner="sum") crossed_feature_a_x_b = crossed_column( columns=[sparse_feature_a, sparse_feature_b], hash_bucket_size=10000) real_feature = real_valued_column("real_feature") real_feature_buckets = bucketized_column( source_column=real_feature, boundaries=[...]) my_features = [embedding_feature_b, real_feature_buckets, embedding_feature_a]
serialized
: A vector (1-D Tensor) of strings, a batch of binary serialized Example
protos.feature_columns
: An iterable containing all the feature columns. All items should be instances of classes derived from _FeatureColumn.name
: A name for this operation (optional).example_names
: A vector (1-D Tensor) of strings (optional), the names of the serialized protos in the batch.A dict
mapping FeatureColumn to Tensor
and SparseTensor
values.
Defined in tensorflow/contrib/layers/python/layers/feature_column_ops.py
.
© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/layers/parse_feature_columns_from_examples