tf.contrib.layers.conv2d_transpose(*args, **kwargs)
tf.contrib.layers.convolution2d_transpose(*args, **kwargs)
See the guide: Layers (contrib) > Higher level ops for building neural network layers
Adds a convolution2d_transpose with an optional batch normalization layer.
The function creates a variable called weights
, representing the kernel, that is convolved with the input. If batch_norm_params
is None
, a second variable called 'biases' is added to the result of the operation.
inputs
: A 4-D Tensor
of type float
and shape [batch, height, width, in_channels]
for NHWC
data format or [batch, in_channels, height, width]
for NCHW
data format.num_outputs
: integer, the number of output filters.kernel_size
: a list of length 2 holding the [kernel_height, kernel_width] of of the filters. Can be an int if both values are the same.stride
: a list of length 2: [stride_height, stride_width]. Can be an int if both strides are the same. Note that presently both strides must have the same value.padding
: one of 'VALID' or 'SAME'.data_format
: A string. NHWC
(default) and NCHW
are supported.activation_fn
: activation function, set to None to skip it and maintain a linear activation.normalizer_fn
: normalization function to use instead of biases
. If normalizer_fn
is provided then biases_initializer
and biases_regularizer
are ignored and biases
are not created nor added. default set to None for no normalizer functionnormalizer_params
: normalization function parameters.weights_initializer
: An initializer for the weights.weights_regularizer
: Optional regularizer for the weights.biases_initializer
: An initializer for the biases. If None skip biases.biases_regularizer
: Optional regularizer for the biases.reuse
: whether or not the layer and its variables should be reused. To be able to reuse the layer scope must be given.variables_collections
: optional list of collections for all the variables or a dictionary containing a different list of collection per variable.outputs_collections
: collection to add the outputs.trainable
: whether or not the variables should be trainable or not.scope
: Optional scope for variable_scope.a tensor representing the output of the operation.
ValueError
: if 'kernel_size' is not a list of length 2.ValueError
: if data_format
is neither NHWC
nor NCHW
.ValueError
: if C
dimension of inputs
is None.Defined in tensorflow/contrib/framework/python/ops/arg_scope.py
.
© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/layers/conv2d_transpose