tf.contrib.layers.bias_add(*args, **kwargs)
Adds a bias to the inputs.
Can be used as a normalizer function for conv2d and fully_connected.
inputs
: a tensor of with at least rank 2 and value for the last dimension, e.g. [batch_size, depth]
, [None, None, None, depth]
.activation_fn
: activation function, default set to None to skip it and maintain a linear activation.initializer
: An initializer for the bias, defaults to 0.regularizer
: A regularizer like the result of l1_regularizer
or l2_regularizer
.reuse
: whether or not the layer and its variables should be reused. To be able to reuse the layer scope must be given.variables_collections
: optional collections for the variables.outputs_collections
: collections to add the outputs.trainable
: If True
also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES
(see tf.Variable).data_format
: A string. 'NHWC' and 'NCHW' are supported.scope
: Optional scope for variable_scope.a tensor representing the result of adding biases to the inputs.
ValueError
: if data_format
is neither NHWC
nor NCHW
.ValueError
: if data_format
is NCHW
and rank of inputs
is not 4.ValueError
: if the rank of inputs
is undefined.ValueError
: if rank or C
dimension of inputs
is undefined.Defined in tensorflow/contrib/framework/python/ops/arg_scope.py
.
© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/layers/bias_add