tf.contrib.layers
Ops for building neural network layers, regularizers, summaries, etc.
See the Layers (contrib) guide.
Constant OPTIMIZER_CLS_NAMES
Constant SPARSE_FEATURE_CROSS_DEFAULT_HASH_KEY
apply_regularization(...): Returns the summed penalty by applying regularizer to the weights_list.
avg_pool2d(...): Adds a 2D average pooling op.
batch_norm(...): Adds a Batch Normalization layer from http://arxiv.org/abs/1502.03167.
bias_add(...): Adds a bias to the inputs.
bucketized_column(...): Creates a _BucketizedColumn for discretizing dense input.
check_feature_columns(...): Checks the validity of the set of FeatureColumns.
conv2d(...): Adds an N-D convolution followed by an optional batch_norm layer.
conv2d_in_plane(...): Performs the same in-plane convolution to each channel independently.
conv2d_transpose(...): Adds a convolution2d_transpose with an optional batch normalization layer.
convolution2d(...): Adds an N-D convolution followed by an optional batch_norm layer.
convolution2d_in_plane(...): Performs the same in-plane convolution to each channel independently.
convolution2d_transpose(...): Adds a convolution2d_transpose with an optional batch normalization layer.
create_feature_spec_for_parsing(...): Helper that prepares features config from input feature_columns.
crossed_column(...): Creates a _CrossedColumn for performing feature crosses.
dropout(...): Returns a dropout op applied to the input.
embed_sequence(...): Maps a sequence of symbols to a sequence of embeddings.
embedding_column(...): Creates an _EmbeddingColumn for feeding sparse data into a DNN.
feature_column module: This API defines FeatureColumn abstraction.
flatten(...): Flattens the input while maintaining the batch_size.
fully_connected(...): Adds a fully connected layer.
infer_real_valued_columns(...)
input_from_feature_columns(...): A tf.contrib.layer style input layer builder based on FeatureColumns.
joint_weighted_sum_from_feature_columns(...): A restricted linear prediction builder based on FeatureColumns.
l1_regularizer(...): Returns a function that can be used to apply L1 regularization to weights.
l2_regularizer(...): Returns a function that can be used to apply L2 regularization to weights.
layer_norm(...): Adds a Layer Normalization layer from https://arxiv.org/abs/1607.06450.
legacy_fully_connected(...): Adds the parameters for a fully connected layer and returns the output.
Constant legacy_linear
Constant legacy_relu
Constant linear
make_place_holder_tensors_for_base_features(...): Returns placeholder tensors for inference.
max_pool2d(...): Adds a 2D Max Pooling op.
multi_class_target(...): Creates a _TargetColumn for multi class single label classification. (deprecated)
one_hot_column(...): Creates an _OneHotColumn for a one-hot or multi-hot repr in a DNN.
one_hot_encoding(...): Transform numeric labels into onehot_labels using tf.one_hot.
optimize_loss(...): Given loss and parameters for optimizer, returns a training op.
parse_feature_columns_from_examples(...): Parses tf.Examples to extract tensors for given feature_columns.
parse_feature_columns_from_sequence_examples(...): Parses tf.SequenceExamples to extract tensors for given FeatureColumns.
real_valued_column(...): Creates a _RealValuedColumn for dense numeric data.
regression_target(...): Creates a _TargetColumn for linear regression. (deprecated)
Constant relu
Constant relu6
repeat(...): Applies the same layer with the same arguments repeatedly.
safe_embedding_lookup_sparse(...): Lookup embedding results, accounting for invalid IDs and empty features.
scattered_embedding_column(...): Creates an embedding column of a sparse feature using parameter hashing.
separable_conv2d(...): Adds a depth-separable 2D convolution with optional batch_norm layer.
separable_convolution2d(...): Adds a depth-separable 2D convolution with optional batch_norm layer.
sequence_input_from_feature_columns(...): Builds inputs for sequence models from FeatureColumns. (experimental)
shared_embedding_columns(...): Creates a list of _EmbeddingColumn sharing the same embedding.
softmax(...): Performs softmax on Nth dimension of N-dimensional logit tensor.
sparse_column_with_hash_bucket(...): Creates a _SparseColumn with hashed bucket configuration.
sparse_column_with_integerized_feature(...): Creates an integerized _SparseColumn.
sparse_column_with_keys(...): Creates a _SparseColumn with keys.
stack(...): Builds a stack of layers by applying layer repeatedly using stack_args.
sum_regularizer(...): Returns a function that applies the sum of multiple regularizers.
summaries module: Utility functions for summary creation.
summarize_activation(...): Summarize an activation.
summarize_activations(...): Summarize activations, using summarize_activation to summarize.
summarize_collection(...): Summarize a graph collection of tensors, possibly filtered by name.
summarize_tensor(...): Summarize a tensor using a suitable summary type.
summarize_tensors(...): Summarize a set of tensors.
unit_norm(...): Normalizes the given input across the specified dimension to unit length.
variance_scaling_initializer(...): Returns an initializer that generates tensors without scaling variance.
weighted_sparse_column(...): Creates a _SparseColumn by combining sparse_id_column with a weight column.
weighted_sum_from_feature_columns(...): A tf.contrib.layer style linear prediction builder based on FeatureColumns.
xavier_initializer(...): Returns an initializer performing "Xavier" initialization for weights.
xavier_initializer_conv2d(...): Returns an initializer performing "Xavier" initialization for weights.
Defined in tensorflow/contrib/layers/__init__.py.
© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/layers