class tf.contrib.distributions.WishartCholesky
See the guide: Statistical Distributions (contrib) > Multivariate distributions
The matrix Wishart distribution on positive definite matrices.
This distribution is defined by a scalar degrees of freedom df
and a lower, triangular Cholesky factor which characterizes the scale matrix.
Using WishartCholesky is a constant-time improvement over WishartFull. It saves an O(nbk^3) operation, i.e., a matrix-product operation for sampling and a Cholesky factorization in log_prob. For most use-cases it often saves another O(nbk^3) operation since most uses of Wishart will also use the Cholesky factorization.
The PDF of this distribution is,
f(X) = det(X)^(0.5 (df-k-1)) exp(-0.5 tr[inv(scale) X]) / B(scale, df)
where df >= k
denotes the degrees of freedom, scale
is a symmetric, pd, k x k
matrix, and the normalizing constant B(scale, df)
is given by:
B(scale, df) = 2^(0.5 df k) |det(scale)|^(0.5 df) Gamma_k(0.5 df)
where Gamma_k
is the multivariate Gamma function.
# Initialize a single 3x3 Wishart with Cholesky factored scale matrix and 5 # degrees-of-freedom.(*) df = 5 chol_scale = tf.cholesky(...) # Shape is [3, 3]. dist = tf.contrib.distributions.WishartCholesky(df=df, scale=chol_scale) # Evaluate this on an observation in R^3, returning a scalar. x = ... # A 3x3 positive definite matrix. dist.pdf(x) # Shape is [], a scalar. # Evaluate this on a two observations, each in R^{3x3}, returning a length two # Tensor. x = [x0, x1] # Shape is [2, 3, 3]. dist.pdf(x) # Shape is [2]. # Initialize two 3x3 Wisharts with Cholesky factored scale matrices. df = [5, 4] chol_scale = tf.cholesky(...) # Shape is [2, 3, 3]. dist = tf.contrib.distributions.WishartCholesky(df=df, scale=chol_scale) # Evaluate this on four observations. x = [[x0, x1], [x2, x3]] # Shape is [2, 2, 3, 3]. dist.pdf(x) # Shape is [2, 2]. # (*) - To efficiently create a trainable covariance matrix, see the example # in tf.contrib.distributions.matrix_diag_transform.
allow_nan_stats
Python boolean describing behavior when a stat is undefined.
Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1 is undefined (no clear way to say it is either + or - infinity), so the variance = E[(X - mean)^2] is also undefined.
allow_nan_stats
: Python boolean.cholesky_input_output_matrices
Boolean indicating if Tensor
input/outputs are Cholesky factorized.
df
Wishart distribution degree(s) of freedom.
dimension
Dimension of underlying vector space. The p
in R^(p*p)
.
dtype
The DType
of Tensor
s handled by this Distribution
.
is_continuous
is_reparameterized
name
Name prepended to all ops created by this Distribution
.
parameters
Dictionary of parameters used to instantiate this Distribution
.
scale_operator_pd
Wishart distribution scale matrix as an OperatorPD.
validate_args
Python boolean indicated possibly expensive checks are enabled.
__init__(df, scale, cholesky_input_output_matrices=False, validate_args=False, allow_nan_stats=True, name='WishartCholesky')
Construct Wishart distributions.
df
: float
or double
Tensor
. Degrees of freedom, must be greater than or equal to dimension of the scale matrix.scale
: float
or double
Tensor
. The Cholesky factorization of the symmetric positive definite scale matrix of the distribution.cholesky_input_output_matrices
: Boolean
. Any function which whose input or output is a matrix assumes the input is Cholesky and returns a Cholesky factored matrix. Examplelog_pdf
input takes a Cholesky and sample_n
returns a Cholesky when cholesky_input_output_matrices=True
.validate_args
: Boolean
, default False
. Whether to validate input with asserts. If validate_args
is False
, and the inputs are invalid, correct behavior is not guaranteed.allow_nan_stats
: Boolean
, default True
. If False
, raise an exception if a statistic (e.g., mean, mode) is undefined for any batch member. If True, batch members with valid parameters leading to undefined statistics will return NaN
for this statistic.name
: The name scope to give class member ops.batch_shape(name='batch_shape')
Shape of a single sample from a single event index as a 1-D Tensor
.
The product of the dimensions of the batch_shape
is the number of independent distributions of this kind the instance represents.
name
: name to give to the opbatch_shape
: Tensor
.cdf(value, name='cdf', **condition_kwargs)
Cumulative distribution function.
Given random variable X
, the cumulative distribution function cdf
is:
cdf(x) := P[X <= x]
value
: float
or double
Tensor
.name
: The name to give this op. **condition_kwargs: Named arguments forwarded to subclass implementation.cdf
: a Tensor
of shape sample_shape(x) + self.batch_shape
with values of type self.dtype
.copy(**override_parameters_kwargs)
Creates a deep copy of the distribution.
Note: the copy distribution may continue to depend on the original intialization arguments.
**override_parameters_kwargs: String/value dictionary of initialization arguments to override with new values.
distribution
: A new instance of type(self)
intitialized from the union of self.parameters and override_parameters_kwargs, i.e., dict(self.parameters, **override_parameters_kwargs)
.entropy(name='entropy')
Shannon entropy in nats.
event_shape(name='event_shape')
Shape of a single sample from a single batch as a 1-D int32 Tensor
.
name
: name to give to the opevent_shape
: Tensor
.get_batch_shape()
Shape of a single sample from a single event index as a TensorShape
.
Same meaning as batch_shape
. May be only partially defined.
batch_shape
: TensorShape
, possibly unknown.get_event_shape()
Shape of a single sample from a single batch as a TensorShape
.
Same meaning as event_shape
. May be only partially defined.
event_shape
: TensorShape
, possibly unknown.is_scalar_batch(name='is_scalar_batch')
Indicates that batch_shape == []
.
name
: The name to give this op.is_scalar_batch
: Boolean
scalar
Tensor
.is_scalar_event(name='is_scalar_event')
Indicates that event_shape == []
.
name
: The name to give this op.is_scalar_event
: Boolean
scalar
Tensor
.log_cdf(value, name='log_cdf', **condition_kwargs)
Log cumulative distribution function.
Given random variable X
, the cumulative distribution function cdf
is:
log_cdf(x) := Log[ P[X <= x] ]
Often, a numerical approximation can be used for log_cdf(x)
that yields a more accurate answer than simply taking the logarithm of the cdf
when x << -1
.
value
: float
or double
Tensor
.name
: The name to give this op. **condition_kwargs: Named arguments forwarded to subclass implementation.logcdf
: a Tensor
of shape sample_shape(x) + self.batch_shape
with values of type self.dtype
.log_normalizing_constant(name='log_normalizing_constant')
Computes the log normalizing constant, log(Z).
log_pdf(value, name='log_pdf', **condition_kwargs)
Log probability density function.
value
: float
or double
Tensor
.name
: The name to give this op. **condition_kwargs: Named arguments forwarded to subclass implementation.log_prob
: a Tensor
of shape sample_shape(x) + self.batch_shape
with values of type self.dtype
.TypeError
: if not is_continuous
.log_pmf(value, name='log_pmf', **condition_kwargs)
Log probability mass function.
value
: float
or double
Tensor
.name
: The name to give this op. **condition_kwargs: Named arguments forwarded to subclass implementation.log_pmf
: a Tensor
of shape sample_shape(x) + self.batch_shape
with values of type self.dtype
.TypeError
: if is_continuous
.log_prob(value, name='log_prob', **condition_kwargs)
Log probability density/mass function (depending on is_continuous
).
value
: float
or double
Tensor
.name
: The name to give this op. **condition_kwargs: Named arguments forwarded to subclass implementation.log_prob
: a Tensor
of shape sample_shape(x) + self.batch_shape
with values of type self.dtype
.log_survival_function(value, name='log_survival_function', **condition_kwargs)
Log survival function.
Given random variable X
, the survival function is defined:
log_survival_function(x) = Log[ P[X > x] ] = Log[ 1 - P[X <= x] ] = Log[ 1 - cdf(x) ]
Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x)
when x >> 1
.
value
: float
or double
Tensor
.name
: The name to give this op. **condition_kwargs: Named arguments forwarded to subclass implementation.Tensor
of shape sample_shape(x) + self.batch_shape
with values of type self.dtype
.
mean(name='mean')
Mean.
mean_log_det(name='mean_log_det')
Computes E[log(det(X))] under this Wishart distribution.
mode(name='mode')
Mode.
param_shapes(cls, sample_shape, name='DistributionParamShapes')
Shapes of parameters given the desired shape of a call to sample()
.
Subclasses should override static method _param_shapes
.
sample_shape
: Tensor
or python list/tuple. Desired shape of a call to sample()
.name
: name to prepend ops with.dict
of parameter name to Tensor
shapes.
param_static_shapes(cls, sample_shape)
param_shapes with static (i.e. TensorShape) shapes.
sample_shape
: TensorShape
or python list/tuple. Desired shape of a call to sample()
.dict
of parameter name to TensorShape
.
ValueError
: if sample_shape
is a TensorShape
and is not fully defined.pdf(value, name='pdf', **condition_kwargs)
Probability density function.
value
: float
or double
Tensor
.name
: The name to give this op. **condition_kwargs: Named arguments forwarded to subclass implementation.prob
: a Tensor
of shape sample_shape(x) + self.batch_shape
with values of type self.dtype
.TypeError
: if not is_continuous
.pmf(value, name='pmf', **condition_kwargs)
Probability mass function.
value
: float
or double
Tensor
.name
: The name to give this op. **condition_kwargs: Named arguments forwarded to subclass implementation.pmf
: a Tensor
of shape sample_shape(x) + self.batch_shape
with values of type self.dtype
.TypeError
: if is_continuous
.prob(value, name='prob', **condition_kwargs)
Probability density/mass function (depending on is_continuous
).
value
: float
or double
Tensor
.name
: The name to give this op. **condition_kwargs: Named arguments forwarded to subclass implementation.prob
: a Tensor
of shape sample_shape(x) + self.batch_shape
with values of type self.dtype
.sample(sample_shape=(), seed=None, name='sample', **condition_kwargs)
Generate samples of the specified shape.
Note that a call to sample()
without arguments will generate a single sample.
sample_shape
: 0D or 1D int32
Tensor
. Shape of the generated samples.seed
: Python integer seed for RNGname
: name to give to the op. **condition_kwargs: Named arguments forwarded to subclass implementation.samples
: a Tensor
with prepended dimensions sample_shape
.scale()
Wishart distribution scale matrix.
std(name='std')
Standard deviation.
survival_function(value, name='survival_function', **condition_kwargs)
Survival function.
Given random variable X
, the survival function is defined:
survival_function(x) = P[X > x] = 1 - P[X <= x] = 1 - cdf(x).
value
: float
or double
Tensor
.name
: The name to give this op. **condition_kwargs: Named arguments forwarded to subclass implementation.Tensorof shape
sample_shape(x) + self.batch_shapewith values of type
self.dtype`.
variance(name='variance')
Variance.
Defined in tensorflow/contrib/distributions/python/ops/wishart.py
.
© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/distributions/WishartCholesky