class tf.contrib.distributions.TransformedDistribution
See the guide: Statistical Distributions (contrib) > Transformed distributions
A Transformed Distribution.
A TransformedDistribution
models p(y)
given a base distribution p(x)
, and a deterministic, invertible, differentiable transform, Y = g(X)
. The transform is typically an instance of the Bijector
class and the base distribution is typically an instance of the Distribution
class.
A Bijector
is expected to implement the following functions: - forward
, - inverse
, - inverse_log_det_jacobian
. The semantics of these functions are outlined in the Bijector
documentation.
We now describe how a TransformedDistribution
alters the input/outputs of a Distribution
associated with a random variable (rv) X
.
Write cdf(Y=y)
for an absolutely continuous cumulative distribution function of random variable Y
; write the probability density function pdf(Y=y) := d^k / (dy_1,...,dy_k) cdf(Y=y)
for its derivative wrt to Y
evaluated at y
. Assume that Y = g(X)
where g
is a deterministic diffeomorphism, i.e., a non-random, continuous, differentiable, and invertible function. Write the inverse of g
as X = g^{-1}(Y)
and (J o g)(x)
for the Jacobian of g
evaluated at x
.
A TransformedDistribution
implements the following operations:
sample
:
Mathematically:
none Y = g(X)
Programmatically:
python return bijector.forward(distribution.sample(...))
log_prob
:
Mathematically:
none (log o pdf)(Y=y) = (log o pdf o g^{-1})(y) + (log o abs o det o J o g^{-1})(y)
Programmatically:
python return (distribution.log_prob(bijector.inverse(x)) + bijector.inverse_log_det_jacobian(x))
log_cdf
:
Mathematically:
none (log o cdf)(Y=y) = (log o cdf o g^{-1})(y)
Programmatically:
python return distribution.log_cdf(bijector.inverse(x))
and similarly for: cdf
, prob
, log_survival_function
, survival_function
.
A simple example constructing a Log-Normal distribution from a Normal distribution:
ds = tf.contrib.distributions log_normal = ds.TransformedDistribution( distribution=ds.Normal(mu=mu, sigma=sigma), bijector=ds.bijector.Exp(), name="LogNormalTransformedDistribution")
A LogNormal
made from callables:
ds = tf.contrib.distributions log_normal = ds.TransformedDistribution( distribution=ds.Normal(mu=mu, sigma=sigma), bijector=ds.bijector.Inline( forward_fn=tf.exp, inverse_fn=tf.log, inverse_log_det_jacobian_fn=( lambda y: -tf.reduce_sum(tf.log(y), reduction_indices=-1)), name="LogNormalTransformedDistribution")
Another example constructing a Normal from a StandardNormal:
ds = tf.contrib.distributions normal = ds.TransformedDistribution( distribution=ds.Normal(mu=0, sigma=1), bijector=ds.bijector.ScaleAndShift(loc=mu, scale=sigma, event_ndims=0), name="NormalTransformedDistribution")
A TransformedDistribution
's batch- and event-shape are implied by the base distribution unless explicitly overridden by batch_shape
or event_shape
arguments. Specifying an overriding batch_shape
(event_shape
) is permitted only if the base distribution has scalar batch-shape (event-shape). The bijector is applied to the distribution as if the distribution possessed the overridden shape(s). The following example demonstrates how to construct a multivariate Normal as a TransformedDistribution
.
bs = tf.contrib.distributions.bijector ds = tf.contrib.distributions # We will create two MVNs with batch_shape = event_shape = 2. mean = [[-1., 0], # batch:0 [0., 1]] # batch:1 chol_cov = [[[1., 0], [0, 1]], # batch:0 [[1, 0], [2, 2]]] # batch:1 mvn1 = ds.TransformedDistribution( distribution=ds.Normal(mu=0., sigma=1.), bijector=bs.Affine(shift=mean, tril=chol_cov), batch_shape=[2], # Valid because base_distribution.batch_shape == []. event_shape=[2]) # Valid because base_distribution.event_shape == []. mvn2 = ds.MultivariateNormalCholesky(mu=mean, chol=chol_cov) # mvn1.log_prob(x) == mvn2.log_prob(x)
allow_nan_stats
Python boolean describing behavior when a stat is undefined.
Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1 is undefined (no clear way to say it is either + or - infinity), so the variance = E[(X - mean)^2] is also undefined.
allow_nan_stats
: Python boolean.bijector
Function transforming x => y.
distribution
Base distribution, p(x).
dtype
The DType
of Tensor
s handled by this Distribution
.
is_continuous
is_reparameterized
name
Name prepended to all ops created by this Distribution
.
parameters
Dictionary of parameters used to instantiate this Distribution
.
validate_args
Python boolean indicated possibly expensive checks are enabled.
__init__(distribution, bijector=None, batch_shape=None, event_shape=None, validate_args=False, name=None)
Construct a Transformed Distribution.
distribution
: The base distribution instance to transform. Typically an instance of Distribution
.bijector
: The object responsible for calculating the transformation. Typically an instance of Bijector
. None
means Identity()
.batch_shape
: integer
vector Tensor
which overrides distribution
batch_shape
; valid only if distribution.is_scalar_batch()
.event_shape
: integer
vector Tensor
which overrides distribution
event_shape
; valid only if distribution.is_scalar_event()
.validate_args
: Python Boolean. Whether to validate input with asserts. If validate_args
is False
, and the inputs are invalid, correct behavior is not guaranteed.name
: The name for the distribution. Default: bijector.name + distribution.name
.batch_shape(name='batch_shape')
Shape of a single sample from a single event index as a 1-D Tensor
.
The product of the dimensions of the batch_shape
is the number of independent distributions of this kind the instance represents.
name
: name to give to the opbatch_shape
: Tensor
.cdf(value, name='cdf', **condition_kwargs)
Cumulative distribution function.
Given random variable X
, the cumulative distribution function cdf
is:
cdf(x) := P[X <= x]
Additional documentation from TransformedDistribution
:
condition_kwargs
:bijector_kwargs
: Python dictionary of arg names/values forwarded to the bijector.distribution_kwargs
: Python dictionary of arg names/values forwarded to the distribution.value
: float
or double
Tensor
.name
: The name to give this op. **condition_kwargs: Named arguments forwarded to subclass implementation.cdf
: a Tensor
of shape sample_shape(x) + self.batch_shape
with values of type self.dtype
.copy(**override_parameters_kwargs)
Creates a deep copy of the distribution.
Note: the copy distribution may continue to depend on the original intialization arguments.
**override_parameters_kwargs: String/value dictionary of initialization arguments to override with new values.
distribution
: A new instance of type(self)
intitialized from the union of self.parameters and override_parameters_kwargs, i.e., dict(self.parameters, **override_parameters_kwargs)
.entropy(name='entropy')
Shannon entropy in nats.
event_shape(name='event_shape')
Shape of a single sample from a single batch as a 1-D int32 Tensor
.
name
: name to give to the opevent_shape
: Tensor
.get_batch_shape()
Shape of a single sample from a single event index as a TensorShape
.
Same meaning as batch_shape
. May be only partially defined.
batch_shape
: TensorShape
, possibly unknown.get_event_shape()
Shape of a single sample from a single batch as a TensorShape
.
Same meaning as event_shape
. May be only partially defined.
event_shape
: TensorShape
, possibly unknown.is_scalar_batch(name='is_scalar_batch')
Indicates that batch_shape == []
.
name
: The name to give this op.is_scalar_batch
: Boolean
scalar
Tensor
.is_scalar_event(name='is_scalar_event')
Indicates that event_shape == []
.
name
: The name to give this op.is_scalar_event
: Boolean
scalar
Tensor
.log_cdf(value, name='log_cdf', **condition_kwargs)
Log cumulative distribution function.
Given random variable X
, the cumulative distribution function cdf
is:
log_cdf(x) := Log[ P[X <= x] ]
Often, a numerical approximation can be used for log_cdf(x)
that yields a more accurate answer than simply taking the logarithm of the cdf
when x << -1
.
Additional documentation from TransformedDistribution
:
condition_kwargs
:bijector_kwargs
: Python dictionary of arg names/values forwarded to the bijector.distribution_kwargs
: Python dictionary of arg names/values forwarded to the distribution.value
: float
or double
Tensor
.name
: The name to give this op. **condition_kwargs: Named arguments forwarded to subclass implementation.logcdf
: a Tensor
of shape sample_shape(x) + self.batch_shape
with values of type self.dtype
.log_pdf(value, name='log_pdf', **condition_kwargs)
Log probability density function.
value
: float
or double
Tensor
.name
: The name to give this op. **condition_kwargs: Named arguments forwarded to subclass implementation.log_prob
: a Tensor
of shape sample_shape(x) + self.batch_shape
with values of type self.dtype
.TypeError
: if not is_continuous
.log_pmf(value, name='log_pmf', **condition_kwargs)
Log probability mass function.
value
: float
or double
Tensor
.name
: The name to give this op. **condition_kwargs: Named arguments forwarded to subclass implementation.log_pmf
: a Tensor
of shape sample_shape(x) + self.batch_shape
with values of type self.dtype
.TypeError
: if is_continuous
.log_prob(value, name='log_prob', **condition_kwargs)
Log probability density/mass function (depending on is_continuous
).
Additional documentation from TransformedDistribution
:
Implements (log o p o g^{-1})(y) + (log o abs o det o J o g^{-1})(y)
, where g^{-1}
is the inverse of transform
.
Also raises a `ValueError` if `inverse` was not provided to the distribution and `y` was not returned from `sample`.
condition_kwargs
:bijector_kwargs
: Python dictionary of arg names/values forwarded to the bijector.distribution_kwargs
: Python dictionary of arg names/values forwarded to the distribution.value
: float
or double
Tensor
.name
: The name to give this op. **condition_kwargs: Named arguments forwarded to subclass implementation.log_prob
: a Tensor
of shape sample_shape(x) + self.batch_shape
with values of type self.dtype
.log_survival_function(value, name='log_survival_function', **condition_kwargs)
Log survival function.
Given random variable X
, the survival function is defined:
log_survival_function(x) = Log[ P[X > x] ] = Log[ 1 - P[X <= x] ] = Log[ 1 - cdf(x) ]
Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x)
when x >> 1
.
Additional documentation from TransformedDistribution
:
condition_kwargs
:bijector_kwargs
: Python dictionary of arg names/values forwarded to the bijector.distribution_kwargs
: Python dictionary of arg names/values forwarded to the distribution.value
: float
or double
Tensor
.name
: The name to give this op. **condition_kwargs: Named arguments forwarded to subclass implementation.Tensor
of shape sample_shape(x) + self.batch_shape
with values of type self.dtype
.
mean(name='mean')
Mean.
mode(name='mode')
Mode.
param_shapes(cls, sample_shape, name='DistributionParamShapes')
Shapes of parameters given the desired shape of a call to sample()
.
Subclasses should override static method _param_shapes
.
sample_shape
: Tensor
or python list/tuple. Desired shape of a call to sample()
.name
: name to prepend ops with.dict
of parameter name to Tensor
shapes.
param_static_shapes(cls, sample_shape)
param_shapes with static (i.e. TensorShape) shapes.
sample_shape
: TensorShape
or python list/tuple. Desired shape of a call to sample()
.dict
of parameter name to TensorShape
.
ValueError
: if sample_shape
is a TensorShape
and is not fully defined.pdf(value, name='pdf', **condition_kwargs)
Probability density function.
value
: float
or double
Tensor
.name
: The name to give this op. **condition_kwargs: Named arguments forwarded to subclass implementation.prob
: a Tensor
of shape sample_shape(x) + self.batch_shape
with values of type self.dtype
.TypeError
: if not is_continuous
.pmf(value, name='pmf', **condition_kwargs)
Probability mass function.
value
: float
or double
Tensor
.name
: The name to give this op. **condition_kwargs: Named arguments forwarded to subclass implementation.pmf
: a Tensor
of shape sample_shape(x) + self.batch_shape
with values of type self.dtype
.TypeError
: if is_continuous
.prob(value, name='prob', **condition_kwargs)
Probability density/mass function (depending on is_continuous
).
Additional documentation from TransformedDistribution
:
Implements p(g^{-1}(y)) det|J(g^{-1}(y))|
, where g^{-1}
is the inverse of transform
.
Also raises a `ValueError` if `inverse` was not provided to the distribution and `y` was not returned from `sample`.
condition_kwargs
:bijector_kwargs
: Python dictionary of arg names/values forwarded to the bijector.distribution_kwargs
: Python dictionary of arg names/values forwarded to the distribution.value
: float
or double
Tensor
.name
: The name to give this op. **condition_kwargs: Named arguments forwarded to subclass implementation.prob
: a Tensor
of shape sample_shape(x) + self.batch_shape
with values of type self.dtype
.sample(sample_shape=(), seed=None, name='sample', **condition_kwargs)
Generate samples of the specified shape.
Note that a call to sample()
without arguments will generate a single sample.
sample_shape
: 0D or 1D int32
Tensor
. Shape of the generated samples.seed
: Python integer seed for RNGname
: name to give to the op. **condition_kwargs: Named arguments forwarded to subclass implementation.samples
: a Tensor
with prepended dimensions sample_shape
.std(name='std')
Standard deviation.
survival_function(value, name='survival_function', **condition_kwargs)
Survival function.
Given random variable X
, the survival function is defined:
survival_function(x) = P[X > x] = 1 - P[X <= x] = 1 - cdf(x).
Additional documentation from TransformedDistribution
:
condition_kwargs
:bijector_kwargs
: Python dictionary of arg names/values forwarded to the bijector.distribution_kwargs
: Python dictionary of arg names/values forwarded to the distribution.value
: float
or double
Tensor
.name
: The name to give this op. **condition_kwargs: Named arguments forwarded to subclass implementation.Tensorof shape
sample_shape(x) + self.batch_shapewith values of type
self.dtype`.
variance(name='variance')
Variance.
Defined in tensorflow/contrib/distributions/python/ops/transformed_distribution.py
.
© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/distributions/TransformedDistribution