W3cubDocs

/TensorFlow Python

tf.contrib.distributions.QuantizedDistribution

class tf.contrib.distributions.QuantizedDistribution

See the guide: Statistical Distributions (contrib) > Transformed distributions

Distribution representing the quantization Y = ceiling(X).

Definition in terms of sampling.

1. Draw X
2. Set Y <-- ceiling(X)
3. If Y < lower_cutoff, reset Y <-- lower_cutoff
4. If Y > upper_cutoff, reset Y <-- upper_cutoff
5. Return Y

Definition in terms of the probability mass function.

Given scalar random variable X, we define a discrete random variable Y supported on the integers as follows:

P[Y = j] := P[X <= lower_cutoff],  if j == lower_cutoff,
         := P[X > upper_cutoff - 1],  j == upper_cutoff,
         := 0, if j < lower_cutoff or j > upper_cutoff,
         := P[j - 1 < X <= j],  all other j.

Conceptually, without cutoffs, the quantization process partitions the real line R into half open intervals, and identifies an integer j with the right endpoints:

R = ... (-2, -1](-1, 0](0, 1](1, 2](2, 3](3, 4] ...
j = ...      -1      0     1     2     3     4  ...

P[Y = j] is the mass of X within the jth interval. If lower_cutoff = 0, and upper_cutoff = 2, then the intervals are redrawn and j is re-assigned:

R = (-infty, 0](0, 1](1, infty)
j =          0     1     2

P[Y = j] is still the mass of X within the jth interval.

Caveats

Since evaluation of each P[Y = j] involves a cdf evaluation (rather than a closed form function such as for a Poisson), computations such as mean and entropy are better done with samples or approximations, and are not implemented by this class.

Properties

allow_nan_stats

Python boolean describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1 is undefined (no clear way to say it is either + or - infinity), so the variance = E[(X - mean)^2] is also undefined.

Returns:

  • allow_nan_stats: Python boolean.

distribution

Base distribution, p(x).

dtype

The DType of Tensors handled by this Distribution.

is_continuous

is_reparameterized

name

Name prepended to all ops created by this Distribution.

parameters

Dictionary of parameters used to instantiate this Distribution.

validate_args

Python boolean indicated possibly expensive checks are enabled.

Methods

__init__(distribution, lower_cutoff=None, upper_cutoff=None, validate_args=False, name='QuantizedDistribution')

Construct a Quantized Distribution representing Y = ceiling(X).

Some properties are inherited from the distribution defining X. Example: allow_nan_stats is determined for this QuantizedDistribution by reading the distribution.

Args:

  • distribution: The base distribution class to transform. Typically an instance of Distribution.
  • lower_cutoff: Tensor with same dtype as this distribution and shape able to be added to samples. Should be a whole number. Default None. If provided, base distribution's pdf/pmf should be defined at lower_cutoff.
  • upper_cutoff: Tensor with same dtype as this distribution and shape able to be added to samples. Should be a whole number. Default None. If provided, base distribution's pdf/pmf should be defined at upper_cutoff - 1. upper_cutoff must be strictly greater than lower_cutoff.
  • validate_args: Python boolean. Whether to validate input with asserts. If validate_args is False, and the inputs are invalid, correct behavior is not guaranteed.
  • name: The name for the distribution.

Raises:

  • TypeError: If dist_cls is not a subclass of Distribution or continuous.
  • NotImplementedError: If the base distribution does not implement cdf.

batch_shape(name='batch_shape')

Shape of a single sample from a single event index as a 1-D Tensor.

The product of the dimensions of the batch_shape is the number of independent distributions of this kind the instance represents.

Args:

  • name: name to give to the op

Returns:

  • batch_shape: Tensor.

cdf(value, name='cdf', **condition_kwargs)

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Additional documentation from QuantizedDistribution:

For whole numbers y,

cdf(y) := P[Y <= y]
        = 1, if y >= upper_cutoff,
        = 0, if y < lower_cutoff,
        = P[X <= y], otherwise.

Since Y only has mass at whole numbers, P[Y <= y] = P[Y <= floor(y)]. This dictates that fractional y are first floored to a whole number, and then above definition applies.

The base distribution's cdf method must be defined on y - 1.

Args:

  • value: float or double Tensor.
  • name: The name to give this op. **condition_kwargs: Named arguments forwarded to subclass implementation.

Returns:

  • cdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

copy(**override_parameters_kwargs)

Creates a deep copy of the distribution.

Note: the copy distribution may continue to depend on the original intialization arguments.

Args:

**override_parameters_kwargs: String/value dictionary of initialization arguments to override with new values.

Returns:

  • distribution: A new instance of type(self) intitialized from the union of self.parameters and override_parameters_kwargs, i.e., dict(self.parameters, **override_parameters_kwargs).

entropy(name='entropy')

Shannon entropy in nats.

event_shape(name='event_shape')

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

  • name: name to give to the op

Returns:

  • event_shape: Tensor.

get_batch_shape()

Shape of a single sample from a single event index as a TensorShape.

Same meaning as batch_shape. May be only partially defined.

Returns:

  • batch_shape: TensorShape, possibly unknown.

get_event_shape()

Shape of a single sample from a single batch as a TensorShape.

Same meaning as event_shape. May be only partially defined.

Returns:

  • event_shape: TensorShape, possibly unknown.

is_scalar_batch(name='is_scalar_batch')

Indicates that batch_shape == [].

Args:

  • name: The name to give this op.

Returns:

  • is_scalar_batch: Boolean scalar Tensor.

is_scalar_event(name='is_scalar_event')

Indicates that event_shape == [].

Args:

  • name: The name to give this op.

Returns:

  • is_scalar_event: Boolean scalar Tensor.

log_cdf(value, name='log_cdf', **condition_kwargs)

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[ P[X <= x] ]

Often, a numerical approximation can be used for log_cdf(x) that yields a more accurate answer than simply taking the logarithm of the cdf when x << -1.

Additional documentation from QuantizedDistribution:

For whole numbers y,

cdf(y) := P[Y <= y]
        = 1, if y >= upper_cutoff,
        = 0, if y < lower_cutoff,
        = P[X <= y], otherwise.

Since Y only has mass at whole numbers, P[Y <= y] = P[Y <= floor(y)]. This dictates that fractional y are first floored to a whole number, and then above definition applies.

The base distribution's log_cdf method must be defined on y - 1.

Args:

  • value: float or double Tensor.
  • name: The name to give this op. **condition_kwargs: Named arguments forwarded to subclass implementation.

Returns:

  • logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

log_pdf(value, name='log_pdf', **condition_kwargs)

Log probability density function.

Args:

  • value: float or double Tensor.
  • name: The name to give this op. **condition_kwargs: Named arguments forwarded to subclass implementation.

Returns:

  • log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

Raises:

  • TypeError: if not is_continuous.

log_pmf(value, name='log_pmf', **condition_kwargs)

Log probability mass function.

Args:

  • value: float or double Tensor.
  • name: The name to give this op. **condition_kwargs: Named arguments forwarded to subclass implementation.

Returns:

  • log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

Raises:

  • TypeError: if is_continuous.

log_prob(value, name='log_prob', **condition_kwargs)

Log probability density/mass function (depending on is_continuous).

Additional documentation from QuantizedDistribution:

For whole numbers y,

P[Y = y] := P[X <= lower_cutoff],  if y == lower_cutoff,
         := P[X > upper_cutoff - 1],  y == upper_cutoff,
         := 0, if j < lower_cutoff or y > upper_cutoff,
         := P[y - 1 < X <= y],  all other y.

The base distribution's log_cdf method must be defined on y - 1. If the base distribution has a log_survival_function method results will be more accurate for large values of y, and in this case the log_survival_function must also be defined on y - 1.

Args:

  • value: float or double Tensor.
  • name: The name to give this op. **condition_kwargs: Named arguments forwarded to subclass implementation.

Returns:

  • log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

log_survival_function(value, name='log_survival_function', **condition_kwargs)

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[ P[X > x] ]
                         = Log[ 1 - P[X <= x] ]
                         = Log[ 1 - cdf(x) ]

Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Additional documentation from QuantizedDistribution:

For whole numbers y,

survival_function(y) := P[Y > y]
                      = 0, if y >= upper_cutoff,
                      = 1, if y < lower_cutoff,
                      = P[X <= y], otherwise.

Since Y only has mass at whole numbers, P[Y <= y] = P[Y <= floor(y)]. This dictates that fractional y are first floored to a whole number, and then above definition applies.

The base distribution's log_cdf method must be defined on y - 1.

Args:

  • value: float or double Tensor.
  • name: The name to give this op. **condition_kwargs: Named arguments forwarded to subclass implementation.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

mean(name='mean')

Mean.

mode(name='mode')

Mode.

param_shapes(cls, sample_shape, name='DistributionParamShapes')

Shapes of parameters given the desired shape of a call to sample().

Subclasses should override static method _param_shapes.

Args:

  • sample_shape: Tensor or python list/tuple. Desired shape of a call to sample().
  • name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

param_static_shapes(cls, sample_shape)

param_shapes with static (i.e. TensorShape) shapes.

Args:

  • sample_shape: TensorShape or python list/tuple. Desired shape of a call to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

  • ValueError: if sample_shape is a TensorShape and is not fully defined.

pdf(value, name='pdf', **condition_kwargs)

Probability density function.

Args:

  • value: float or double Tensor.
  • name: The name to give this op. **condition_kwargs: Named arguments forwarded to subclass implementation.

Returns:

  • prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

Raises:

  • TypeError: if not is_continuous.

pmf(value, name='pmf', **condition_kwargs)

Probability mass function.

Args:

  • value: float or double Tensor.
  • name: The name to give this op. **condition_kwargs: Named arguments forwarded to subclass implementation.

Returns:

  • pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

Raises:

  • TypeError: if is_continuous.

prob(value, name='prob', **condition_kwargs)

Probability density/mass function (depending on is_continuous).

Additional documentation from QuantizedDistribution:

For whole numbers y,

P[Y = y] := P[X <= lower_cutoff],  if y == lower_cutoff,
         := P[X > upper_cutoff - 1],  y == upper_cutoff,
         := 0, if j < lower_cutoff or y > upper_cutoff,
         := P[y - 1 < X <= y],  all other y.

The base distribution's cdf method must be defined on y - 1. If the base distribution has a survival_function method, results will be more accurate for large values of y, and in this case the survival_function must also be defined on y - 1.

Args:

  • value: float or double Tensor.
  • name: The name to give this op. **condition_kwargs: Named arguments forwarded to subclass implementation.

Returns:

  • prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

sample(sample_shape=(), seed=None, name='sample', **condition_kwargs)

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single sample.

Args:

  • sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.
  • seed: Python integer seed for RNG
  • name: name to give to the op. **condition_kwargs: Named arguments forwarded to subclass implementation.

Returns:

  • samples: a Tensor with prepended dimensions sample_shape.

std(name='std')

Standard deviation.

survival_function(value, name='survival_function', **condition_kwargs)

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
                     = 1 - P[X <= x]
                     = 1 - cdf(x).

Additional documentation from QuantizedDistribution:

For whole numbers y,

survival_function(y) := P[Y > y]
                      = 0, if y >= upper_cutoff,
                      = 1, if y < lower_cutoff,
                      = P[X <= y], otherwise.

Since Y only has mass at whole numbers, P[Y <= y] = P[Y <= floor(y)]. This dictates that fractional y are first floored to a whole number, and then above definition applies.

The base distribution's cdf method must be defined on y - 1.

Args:

  • value: float or double Tensor.
  • name: The name to give this op. **condition_kwargs: Named arguments forwarded to subclass implementation.

Returns:

Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

variance(name='variance')

Variance.

Defined in tensorflow/contrib/distributions/python/ops/quantized_distribution.py.

© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/distributions/QuantizedDistribution