tf.contrib.distributions
Classes representing statistical distributions and ops for working with them.
See the Statistical Distributions (contrib) guide.
class Bernoulli: Bernoulli distribution.
class BernoulliWithSigmoidP: Bernoulli with p = sigmoid(p).
class Beta: Beta distribution.
class BetaWithSoftplusAB: Beta with softplus transform on a and b.
class Binomial: Binomial distribution.
class Categorical: Categorical distribution.
class Chi2: The Chi2 distribution with degrees of freedom df.
class Chi2WithAbsDf: Chi2 with parameter transform df = floor(abs(df)).
class Dirichlet: Dirichlet distribution.
class DirichletMultinomial: DirichletMultinomial mixture distribution.
class Distribution: A generic probability distribution base class.
class Exponential: The Exponential distribution with rate parameter lam.
class ExponentialWithSoftplusLam: Exponential with softplus transform on lam.
class Gamma: The Gamma distribution with parameter alpha and beta.
class GammaWithSoftplusAlphaBeta: Gamma with softplus transform on alpha and beta.
class InverseGamma: The InverseGamma distribution with parameter alpha and beta.
class InverseGammaWithSoftplusAlphaBeta: Inverse Gamma with softplus applied to alpha and beta.
class Laplace: The Laplace distribution with location and scale > 0 parameters.
class LaplaceWithSoftplusScale: Laplace with softplus applied to scale.
class Mixture: Mixture distribution.
class Multinomial: Multinomial distribution.
class MultivariateNormalCholesky: The multivariate normal distribution on R^k.
class MultivariateNormalDiag: The multivariate normal distribution on R^k.
class MultivariateNormalDiagPlusVDVT: The multivariate normal distribution on R^k.
class MultivariateNormalDiagWithSoftplusStDev: MultivariateNormalDiag with diag_stddev = softplus(diag_stddev).
class MultivariateNormalFull: The multivariate normal distribution on R^k.
class Normal: The scalar Normal distribution with mean and stddev parameters mu, sigma.
class NormalWithSoftplusSigma: Normal with softplus applied to sigma.
class Poisson: Poisson distribution.
class QuantizedDistribution: Distribution representing the quantization Y = ceiling(X).
class RegisterKL: Decorator to register a KL divergence implementation function.
class StudentT: Student's t distribution with degree-of-freedom parameter df.
class StudentTWithAbsDfSoftplusSigma: StudentT with df = floor(abs(df)) and sigma = softplus(sigma).
class TransformedDistribution: A Transformed Distribution.
class Uniform: Uniform distribution with a and b parameters.
class WishartCholesky: The matrix Wishart distribution on positive definite matrices.
class WishartFull: The matrix Wishart distribution on positive definite matrices.
bijector module: Bijector Ops. See the Random variable transformations (contrib) guide.
kl(...): Get the KL-divergence KL(dist_a || dist_b).
matrix_diag_transform(...): Transform diagonal of [batch-]matrix, leave rest of matrix unchanged.
normal_conjugates_known_sigma_posterior(...): Posterior Normal distribution with conjugate prior on the mean.
normal_conjugates_known_sigma_predictive(...): Posterior predictive Normal distribution w. conjugate prior on the mean.
softplus_inverse(...): Computes the inverse softplus, i.e., x = softplus_inverse(softplus(x)).
Defined in tensorflow/contrib/distributions/__init__.py.
© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/distributions