W3cubDocs

/TensorFlow Python

tf.assert_non_positive(x, data=None, summarize=None, message=None, name=None)

tf.assert_non_positive(x, data=None, summarize=None, message=None, name=None)

See the guide: Asserts and boolean checks

Assert the condition x <= 0 holds element-wise.

Example of adding a dependency to an operation:

with tf.control_dependencies([tf.assert_non_positive(x)]):
  output = tf.reduce_sum(x)

Non-positive means, for every element x[i] of x, we have x[i] <= 0. If x is empty this is trivially satisfied.

Args:

  • x: Numeric Tensor.
  • data: The tensors to print out if the condition is False. Defaults to error message and first few entries of x.
  • summarize: Print this many entries of each tensor.
  • message: A string to prefix to the default message.
  • name: A name for this operation (optional). Defaults to "assert_non_positive".

Returns:

Op raising InvalidArgumentError unless x is all non-positive.

Defined in tensorflow/python/ops/check_ops.py.

© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/assert_non_positive