tf
class AggregationMethod
: A class listing aggregation methods used to combine gradients.
Assert(...)
: Asserts that the given condition is true.
Constant COMPILER_VERSION
class ConditionalAccumulator
: A conditional accumulator for aggregating gradients.
class ConditionalAccumulatorBase
: A conditional accumulator for aggregating gradients.
class DType
: Represents the type of the elements in a Tensor
.
class DeviceSpec
: Represents a (possibly partial) specification for a TensorFlow device.
class Dimension
: Represents the value of one dimension in a TensorShape.
class FIFOQueue
: A queue implementation that dequeues elements in first-in first-out order.
class FixedLenFeature
: Configuration for parsing a fixed-length input feature.
class FixedLenSequenceFeature
: Configuration for a dense input feature in a sequence item.
class FixedLengthRecordReader
: A Reader that outputs fixed-length records from a file.
Constant GIT_VERSION
Constant GRAPH_DEF_VERSION
Constant GRAPH_DEF_VERSION_MIN_CONSUMER
Constant GRAPH_DEF_VERSION_MIN_PRODUCER
class Graph
: A TensorFlow computation, represented as a dataflow graph.
class GraphKeys
: Standard names to use for graph collections.
class IdentityReader
: A Reader that outputs the queued work as both the key and value.
class IndexedSlices
: A sparse representation of a set of tensor slices at given indices.
class InteractiveSession
: A TensorFlow Session
for use in interactive contexts, such as a shell.
NoGradient(...)
: Specifies that ops of type op_type
is not differentiable.
NotDifferentiable(...)
: Specifies that ops of type op_type
is not differentiable.
class OpError
: A generic error that is raised when TensorFlow execution fails.
class Operation
: Represents a graph node that performs computation on tensors.
class PaddingFIFOQueue
: A FIFOQueue that supports batching variable-sized tensors by padding.
Print(...)
: Prints a list of tensors.
class PriorityQueue
: A queue implementation that dequeues elements in prioritized order.
Constant QUANTIZED_DTYPES
class QueueBase
: Base class for queue implementations.
class RandomShuffleQueue
: A queue implementation that dequeues elements in a random order.
class ReaderBase
: Base class for different Reader types, that produce a record every step.
class RegisterGradient
: A decorator for registering the gradient function for an op type.
class Session
: A class for running TensorFlow operations.
class SparseConditionalAccumulator
: A conditional accumulator for aggregating sparse gradients.
class SparseFeature
: Configuration for parsing a sparse input feature.
class SparseTensor
: Represents a sparse tensor.
class SparseTensorValue
: SparseTensorValue(indices, values, dense_shape)
class TFRecordReader
: A Reader that outputs the records from a TFRecords file.
class Tensor
: Represents one of the outputs of an Operation
.
class TensorArray
: Class wrapping dynamic-sized, per-time-step, write-once Tensor arrays.
class TensorShape
: Represents the shape of a Tensor
.
class TextLineReader
: A Reader that outputs the lines of a file delimited by newlines.
Constant VERSION
class VarLenFeature
: Configuration for parsing a variable-length input feature.
class Variable
: See the Variables How To for a high
class VariableScope
: Variable scope object to carry defaults to provide to get_variable
.
class WholeFileReader
: A Reader that outputs the entire contents of a file as a value.
abs(...)
: Computes the absolute value of a tensor.
Constant absolute_import
accumulate_n(...)
: Returns the element-wise sum of a list of tensors.
acos(...)
: Computes acos of x element-wise.
add(...)
: Returns x + y element-wise.
add_check_numerics_ops(...)
: Connect a check_numerics
to every floating point tensor.
add_n(...)
: Adds all input tensors element-wise.
add_to_collection(...)
: Wrapper for Graph.add_to_collection()
using the default graph.
all_variables(...)
: See tf.global_variables
. (deprecated)
app
module: Generic entry point script.
arg_max(...)
: Returns the index with the largest value across dimensions of a tensor.
arg_min(...)
: Returns the index with the smallest value across dimensions of a tensor.
argmax(...)
: Returns the index with the largest value across axes of a tensor.
argmin(...)
: Returns the index with the smallest value across axes of a tensor.
as_dtype(...)
: Converts the given type_value
to a DType
.
as_string(...)
: Converts each entry in the given tensor to strings. Supports many numeric
asin(...)
: Computes asin of x element-wise.
assert_equal(...)
: Assert the condition x == y
holds element-wise.
assert_greater(...)
: Assert the condition x > y
holds element-wise.
assert_greater_equal(...)
: Assert the condition x >= y
holds element-wise.
assert_integer(...)
: Assert that x
is of integer dtype.
assert_less(...)
: Assert the condition x < y
holds element-wise.
assert_less_equal(...)
: Assert the condition x <= y
holds element-wise.
assert_negative(...)
: Assert the condition x < 0
holds element-wise.
assert_non_negative(...)
: Assert the condition x >= 0
holds element-wise.
assert_non_positive(...)
: Assert the condition x <= 0
holds element-wise.
assert_positive(...)
: Assert the condition x > 0
holds element-wise.
assert_proper_iterable(...)
: Static assert that values is a "proper" iterable.
assert_rank(...)
: Assert x
has rank equal to rank
.
assert_rank_at_least(...)
: Assert x
has rank equal to rank
or higher.
assert_type(...)
: Statically asserts that the given Tensor
is of the specified type.
assert_variables_initialized(...)
: Returns an Op to check if variables are initialized.
assign(...)
: Update 'ref' by assigning 'value' to it.
assign_add(...)
: Update 'ref' by adding 'value' to it.
assign_sub(...)
: Update 'ref' by subtracting 'value' from it.
atan(...)
: Computes atan of x element-wise.
batch_to_space(...)
: BatchToSpace for 4-D tensors of type T.
batch_to_space_nd(...)
: BatchToSpace for N-D tensors of type T.
betainc(...)
: Compute the regularized incomplete beta integral \(I_x(a, b)\).
Constant bfloat16
bitcast(...)
: Bitcasts a tensor from one type to another without copying data.
Constant bool
boolean_mask(...)
: Apply boolean mask to tensor. Numpy equivalent is tensor[mask]
.
broadcast_dynamic_shape(...)
: Returns the broadcasted dynamic shape between shape_x
and shape_y
.
broadcast_static_shape(...)
: Returns the broadcasted static shape between shape_x
and shape_y
.
case(...)
: Create a case operation.
cast(...)
: Casts a tensor to a new type.
ceil(...)
: Returns element-wise smallest integer in not less than x.
check_numerics(...)
: Checks a tensor for NaN and Inf values.
cholesky(...)
: Computes the Cholesky decomposition of one or more square matrices.
cholesky_solve(...)
: Solves systems of linear eqns A X = RHS
, given Cholesky factorizations.
clip_by_average_norm(...)
: Clips tensor values to a maximum average L2-norm.
clip_by_global_norm(...)
: Clips values of multiple tensors by the ratio of the sum of their norms.
clip_by_norm(...)
: Clips tensor values to a maximum L2-norm.
clip_by_value(...)
: Clips tensor values to a specified min and max.
compat
module: Functions for Python 2 vs. 3 compatibility.
complex(...)
: Converts two real numbers to a complex number.
Constant complex128
Constant complex64
concat(...)
: Concatenates tensors along one dimension.
cond(...)
: Return either fn1() or fn2() based on the boolean predicate pred
.
confusion_matrix(...)
: Computes the confusion matrix from predictions and labels.
conj(...)
: Returns the complex conjugate of a complex number.
constant(...)
: Creates a constant tensor.
class constant_initializer
: Initializer that generates tensors with constant values.
container(...)
: Wrapper for Graph.container()
using the default graph.
contrib
module: contrib module containing volatile or experimental code.
control_dependencies(...)
: Wrapper for Graph.control_dependencies()
using the default graph.
convert_to_tensor(...)
: Converts the given value
to a Tensor
.
convert_to_tensor_or_indexed_slices(...)
: Converts the given object to a Tensor
or an IndexedSlices
.
convert_to_tensor_or_sparse_tensor(...)
: Converts value to a SparseTensor
or Tensor
.
core
module
cos(...)
: Computes cos of x element-wise.
count_nonzero(...)
: Computes number of nonzero elements across dimensions of a tensor.
count_up_to(...)
: Increments 'ref' until it reaches 'limit'.
create_partitioned_variables(...)
: Create a list of partitioned variables according to the given slicing
.
cross(...)
: Compute the pairwise cross product.
cumprod(...)
: Compute the cumulative product of the tensor x
along axis
.
cumsum(...)
: Compute the cumulative sum of the tensor x
along axis
.
decode_base64(...)
: Decode web-safe base64-encoded strings.
decode_csv(...)
: Convert CSV records to tensors. Each column maps to one tensor.
decode_json_example(...)
: Convert JSON-encoded Example records to binary protocol buffer strings.
decode_raw(...)
: Reinterpret the bytes of a string as a vector of numbers.
delete_session_tensor(...)
: Delete the tensor for the given tensor handle.
depth_to_space(...)
: DepthToSpace for tensors of type T.
dequantize(...)
: Dequantize the 'input' tensor into a float Tensor.
deserialize_many_sparse(...)
: Deserialize and concatenate SparseTensors
from a serialized minibatch.
device(...)
: Wrapper for Graph.device()
using the default graph.
diag(...)
: Returns a diagonal tensor with a given diagonal values.
diag_part(...)
: Returns the diagonal part of the tensor.
digamma(...)
: Computes Psi, the derivative of Lgamma (the log of the absolute value of
div(...)
: Divides x / y elementwise (using Python 2 division operator semantics).
divide(...)
: Computes Python style division of x
by y
.
Constant division
Constant double
dynamic_partition(...)
: Partitions data
into num_partitions
tensors using indices from partitions
.
dynamic_stitch(...)
: Interleave the values from the data
tensors into a single tensor.
edit_distance(...)
: Computes the Levenshtein distance between sequences.
einsum(...)
: A generalized contraction between tensors of arbitrary dimension.
encode_base64(...)
: Encode strings into web-safe base64 format.
equal(...)
: Returns the truth value of (x == y) element-wise.
erf(...)
: Computes the Gauss error function of x
element-wise.
erfc(...)
: Computes the complementary error function of x
element-wise.
errors
module: Exception types for TensorFlow errors.
exp(...)
: Computes exponential of x element-wise. \(y = e^x\).
expand_dims(...)
: Inserts a dimension of 1 into a tensor's shape.
expm1(...)
: Computes exponential of x - 1 element-wise.
extract_image_patches(...)
: Extract patches
from images
and put them in the "depth" output dimension.
eye(...)
: Construct an identity matrix, or a batch of matrices.
fake_quant_with_min_max_args(...)
: Fake-quantize the 'inputs' tensor, type float to 'outputs' tensor of same type.
fake_quant_with_min_max_args_gradient(...)
: Compute gradients for a FakeQuantWithMinMaxArgs operation.
fake_quant_with_min_max_vars(...)
: Fake-quantize the 'inputs' tensor of type float and shape [b, h, w, d]
via
fake_quant_with_min_max_vars_gradient(...)
: Compute gradients for a FakeQuantWithMinMaxVars operation.
fake_quant_with_min_max_vars_per_channel(...)
: Fake-quantize the 'inputs' tensor of type float and one of the shapes: [d]
,
fake_quant_with_min_max_vars_per_channel_gradient(...)
: Compute gradients for a FakeQuantWithMinMaxVarsPerChannel operation.
fft(...)
: Compute the 1-dimensional discrete Fourier Transform over the inner-most
fft2d(...)
: Compute the 2-dimensional discrete Fourier Transform over the inner-most
fft3d(...)
: Compute the 3-dimensional discrete Fourier Transform over the inner-most 3
fill(...)
: Creates a tensor filled with a scalar value.
fixed_size_partitioner(...)
: Partitioner to specify a fixed number of shards along given axis.
flags
module: Implementation of the flags interface.
Constant float16
Constant float32
Constant float64
floor(...)
: Returns element-wise largest integer not greater than x.
floor_div(...)
: Returns x // y element-wise.
floordiv(...)
: Divides x / y
elementwise, rounding toward the most negative integer.
floormod(...)
: Returns element-wise remainder of division. When x < 0
xor y < 0
is
foldl(...)
: foldl on the list of tensors unpacked from elems
on dimension 0.
foldr(...)
: foldr on the list of tensors unpacked from elems
on dimension 0.
gather(...)
: Gather slices from params
according to indices
.
gather_nd(...)
: Gather values or slices from params
according to indices
.
get_collection(...)
: Wrapper for Graph.get_collection()
using the default graph.
get_collection_ref(...)
: Wrapper for Graph.get_collection_ref()
using the default graph.
get_default_graph(...)
: Returns the default graph for the current thread.
get_default_session(...)
: Returns the default session for the current thread.
get_local_variable(...)
: Gets an existing local variable or creates a new one.
get_seed(...)
: Returns the local seeds an operation should use given an op-specific seed.
get_session_handle(...)
: Return the handle of data
.
get_session_tensor(...)
: Get the tensor of type dtype
by feeding a tensor handle.
get_variable(...)
: Gets an existing variable with these parameters or create a new one.
get_variable_scope(...)
: Returns the current variable scope.
gfile
module: Import router for file_io.
global_norm(...)
: Computes the global norm of multiple tensors.
global_variables(...)
: Returns global variables.
global_variables_initializer(...)
: Returns an Op that initializes global variables.
gradients(...)
: Constructs symbolic partial derivatives of sum of ys
w.r.t. x in xs
.
graph_util
module: Helpers to manipulate a tensor graph in python.
greater(...)
: Returns the truth value of (x > y) element-wise.
greater_equal(...)
: Returns the truth value of (x >= y) element-wise.
group(...)
: Create an op that groups multiple operations.
Constant half
hessians(...)
: Constructs the Hessian of sum of ys
with respect to x
in xs
.
histogram_fixed_width(...)
: Return histogram of values.
identity(...)
: Return a tensor with the same shape and contents as the input tensor or value.
ifft(...)
: Compute the inverse 1-dimensional discrete Fourier Transform over the inner-most
ifft2d(...)
: Compute the inverse 2-dimensional discrete Fourier Transform over the inner-most
ifft3d(...)
: Compute the inverse 3-dimensional discrete Fourier Transform over the inner-most
igamma(...)
: Compute the lower regularized incomplete Gamma function Q(a, x)
.
igammac(...)
: Compute the upper regularized incomplete Gamma function Q(a, x)
.
imag(...)
: Returns the imaginary part of a complex number.
image
module: Image processing and decoding ops. See the Images guide.
import_graph_def(...)
: Imports the TensorFlow graph in graph_def
into the Python Graph
.
initialize_all_tables(...)
: Returns an Op that initializes all tables of the default graph. (deprecated)
initialize_all_variables(...)
: See tf.global_variables_initializer
. (deprecated)
initialize_local_variables(...)
: See tf.local_variables_initializer
. (deprecated)
initialize_variables(...)
: See tf.variables_initializer
. (deprecated)
Constant int16
Constant int32
Constant int64
Constant int8
invert_permutation(...)
: Computes the inverse permutation of a tensor.
is_finite(...)
: Returns which elements of x are finite.
is_inf(...)
: Returns which elements of x are Inf.
is_nan(...)
: Returns which elements of x are NaN.
is_non_decreasing(...)
: Returns True
if x
is non-decreasing.
is_strictly_increasing(...)
: Returns True
if x
is strictly increasing.
is_variable_initialized(...)
: Tests if a variable has been initialized.
layers
module: This library provides a set of high-level neural networks layers.
lbeta(...)
: Computes ln(|Beta(x)|)
, reducing along the last dimension.
less(...)
: Returns the truth value of (x < y) element-wise.
less_equal(...)
: Returns the truth value of (x <= y) element-wise.
lgamma(...)
: Computes the log of the absolute value of Gamma(x)
element-wise.
lin_space(...)
: Generates values in an interval.
linspace(...)
: Generates values in an interval.
load_file_system_library(...)
: Loads a TensorFlow plugin, containing file system implementation.
load_op_library(...)
: Loads a TensorFlow plugin, containing custom ops and kernels.
local_variables(...)
: Returns local variables.
local_variables_initializer(...)
: Returns an Op that initializes all local variables.
log(...)
: Computes natural logarithm of x element-wise.
log1p(...)
: Computes natural logarithm of (1 + x) element-wise.
logging
module: Logging utilities.
logical_and(...)
: Returns the truth value of x AND y element-wise.
logical_not(...)
: Returns the truth value of NOT x element-wise.
logical_or(...)
: Returns the truth value of x OR y element-wise.
logical_xor(...)
: x ^ y = (x | y) & ~(x & y).
losses
module: Loss operations for use in neural networks.
make_template(...)
: Given an arbitrary function, wrap it so that it does variable sharing.
map_fn(...)
: map on the list of tensors unpacked from elems
on dimension 0.
matching_files(...)
: Returns the set of files matching a pattern.
matmul(...)
: Multiplies matrix a
by matrix b
, producing a
* b
.
matrix_band_part(...)
: Copy a tensor setting everything outside a central band in each innermost matrix
matrix_determinant(...)
: Computes the determinant of one ore more square matrices.
matrix_diag(...)
: Returns a batched diagonal tensor with a given batched diagonal values.
matrix_diag_part(...)
: Returns the batched diagonal part of a batched tensor.
matrix_inverse(...)
: Computes the inverse of one or more square invertible matrices or their
matrix_set_diag(...)
: Returns a batched matrix tensor with new batched diagonal values.
matrix_solve(...)
: Solves systems of linear equations.
matrix_solve_ls(...)
: Solves one or more linear least-squares problems.
matrix_transpose(...)
: Transposes last two dimensions of tensor a
.
matrix_triangular_solve(...)
: Solves systems of linear equations with upper or lower triangular matrices by
maximum(...)
: Returns the max of x and y (i.e. x > y ? x : y) element-wise.
meshgrid(...)
: Broadcasts parameters for evaluation on an N-D grid.
metrics
module: Evaluation-related metrics.
min_max_variable_partitioner(...)
: Partitioner to allocate minimum size per slice.
minimum(...)
: Returns the min of x and y (i.e. x < y ? x : y) element-wise.
mod(...)
: Returns element-wise remainder of division. When x < 0
xor y < 0
is
model_variables(...)
: Returns all variables in the MODEL_VARIABLES collection.
moving_average_variables(...)
: Returns all variables that maintain their moving averages.
multinomial(...)
: Draws samples from a multinomial distribution.
multiply(...)
: Returns x * y element-wise.
name_scope(...)
: Returns a context manager for use when defining a Python op.
negative(...)
: Computes numerical negative value element-wise.
Constant newaxis
nn
module: ## Neural network support. See the Neural Network guide.
no_op(...)
: Does nothing. Only useful as a placeholder for control edges.
no_regularizer(...)
: Use this function to prevent regularization of variables.
norm(...)
: Computes the norm of vectors, matrices, and tensors.
not_equal(...)
: Returns the truth value of (x != y) element-wise.
one_hot(...)
: Returns a one-hot tensor.
ones(...)
: Creates a tensor with all elements set to 1.
class ones_initializer
: Initializer that generates tensors initialized to 1.
ones_like(...)
: Creates a tensor with all elements set to 1.
op_scope(...)
: DEPRECATED. Same as name_scope above, just different argument order.
class orthogonal_initializer
: Initializer that generates an orthogonal matrix.
pad(...)
: Pads a tensor.
parallel_stack(...)
: Stacks a list of rank-R
tensors into one rank-(R+1)
tensor in parallel.
parse_example(...)
: Parses Example
protos into a dict
of tensors.
parse_single_example(...)
: Parses a single Example
proto.
parse_single_sequence_example(...)
: Parses a single SequenceExample
proto.
parse_tensor(...)
: Transforms a serialized tensorflow.TensorProto proto into a Tensor.
placeholder(...)
: Inserts a placeholder for a tensor that will be always fed.
placeholder_with_default(...)
: A placeholder op that passes through input
when its output is not fed.
polygamma(...)
: Compute the polygamma function \(\psi^{(n)} (x)\).
pow(...)
: Computes the power of one value to another.
Constant print_function
py_func(...)
: Wraps a python function and uses it as a TensorFlow op.
python
module: Import core names of TensorFlow.
python_io
module: Python functions for directly manipulating TFRecord-formatted files.
pywrap_tensorflow
module
Constant qint16
Constant qint32
Constant qint8
qr(...)
: Computes the QR decompositions of one or more matrices.
quantize_v2(...)
: Quantize the 'input' tensor of type float to 'output' tensor of type 'T'.
quantized_concat(...)
: Concatenates quantized tensors along one dimension.
Constant quint16
Constant quint8
random_crop(...)
: Randomly crops a tensor to a given size.
random_gamma(...)
: Draws shape
samples from each of the given Gamma distribution(s).
random_normal(...)
: Outputs random values from a normal distribution.
class random_normal_initializer
: Initializer that generates tensors with a normal distribution.
random_shuffle(...)
: Randomly shuffles a tensor along its first dimension.
random_uniform(...)
: Outputs random values from a uniform distribution.
class random_uniform_initializer
: Initializer that generates tensors with a uniform distribution.
range(...)
: Creates a sequence of numbers.
rank(...)
: Returns the rank of a tensor.
read_file(...)
: Reads and outputs the entire contents of the input filename.
real(...)
: Returns the real part of a complex number.
realdiv(...)
: Returns x / y element-wise for real types.
reciprocal(...)
: Computes the reciprocal of x element-wise.
reduce_all(...)
: Computes the "logical and" of elements across dimensions of a tensor.
reduce_any(...)
: Computes the "logical or" of elements across dimensions of a tensor.
reduce_join(...)
: Joins a string Tensor across the given dimensions.
reduce_logsumexp(...)
: Computes log(sum(exp(elements across dimensions of a tensor))).
reduce_max(...)
: Computes the maximum of elements across dimensions of a tensor.
reduce_mean(...)
: Computes the mean of elements across dimensions of a tensor.
reduce_min(...)
: Computes the minimum of elements across dimensions of a tensor.
reduce_prod(...)
: Computes the product of elements across dimensions of a tensor.
reduce_sum(...)
: Computes the sum of elements across dimensions of a tensor.
register_tensor_conversion_function(...)
: Registers a function for converting objects of base_type
to Tensor
.
report_uninitialized_variables(...)
: Adds ops to list the names of uninitialized variables.
required_space_to_batch_paddings(...)
: Calculate padding required to make block_shape divide input_shape.
reset_default_graph(...)
: Clears the default graph stack and resets the global default graph.
reshape(...)
: Reshapes a tensor.
Constant resource
resource_loader
module: Resource management library.
reverse(...)
: Reverses specific dimensions of a tensor.
reverse_sequence(...)
: Reverses variable length slices.
reverse_v2(...)
: Reverses specific dimensions of a tensor.
rint(...)
: Returns element-wise integer closest to x.
round(...)
: Rounds the values of a tensor to the nearest integer, element-wise.
rsqrt(...)
: Computes reciprocal of square root of x element-wise.
saturate_cast(...)
: Performs a safe saturating cast of value
to dtype
.
saved_model
module: Convenience functions to save a model.
scalar_mul(...)
: Multiplies a scalar times a Tensor
or IndexedSlices
object.
scan(...)
: scan on the list of tensors unpacked from elems
on dimension 0.
scatter_add(...)
: Adds sparse updates to a variable reference.
scatter_div(...)
: Divides a variable reference by sparse updates.
scatter_mul(...)
: Multiplies sparse updates into a variable reference.
scatter_nd(...)
: Creates a new tensor by applying sparse updates
to individual
scatter_nd_add(...)
: Applies sparse addition between updates
and individual values or slices
scatter_nd_sub(...)
: Applies sparse subtraction between updates
and individual values or slices
scatter_nd_update(...)
: Applies sparse updates
to individual values or slices within a given
scatter_sub(...)
: Subtracts sparse updates to a variable reference.
scatter_update(...)
: Applies sparse updates to a variable reference.
sdca
module: A Dual Coordinate Ascent optimizer library for training fast linear models.
segment_max(...)
: Computes the maximum along segments of a tensor.
segment_mean(...)
: Computes the mean along segments of a tensor.
segment_min(...)
: Computes the minimum along segments of a tensor.
segment_prod(...)
: Computes the product along segments of a tensor.
segment_sum(...)
: Computes the sum along segments of a tensor.
self_adjoint_eig(...)
: Computes the eigen decomposition of a batch of self-adjoint matrices.
self_adjoint_eigvals(...)
: Computes the eigenvalues of one or more self-adjoint matrices.
sequence_mask(...)
: Return a mask tensor representing the first N positions of each row.
serialize_many_sparse(...)
: Serialize an N
-minibatch SparseTensor
into an [N, 3]
string Tensor
.
serialize_sparse(...)
: Serialize a SparseTensor
into a string 3-vector (1-D Tensor
) object.
set_random_seed(...)
: Sets the graph-level random seed.
setdiff1d(...)
: Computes the difference between two lists of numbers or strings.
sets
module: Tensorflow set operations.
shape(...)
: Returns the shape of a tensor.
shape_n(...)
: Returns shape of tensors.
sigmoid(...)
: Computes sigmoid of x
element-wise.
sign(...)
: Returns an element-wise indication of the sign of a number.
sin(...)
: Computes sin of x element-wise.
size(...)
: Returns the size of a tensor.
slice(...)
: Extracts a slice from a tensor.
space_to_batch(...)
: SpaceToBatch for 4-D tensors of type T.
space_to_batch_nd(...)
: SpaceToBatch for N-D tensors of type T.
space_to_depth(...)
: SpaceToDepth for tensors of type T.
sparse_add(...)
: Adds two tensors, at least one of each is a SparseTensor
.
sparse_concat(...)
: Concatenates a list of SparseTensor
along the specified dimension.
sparse_fill_empty_rows(...)
: Fills empty rows in the input 2-D SparseTensor
with a default value.
sparse_mask(...)
: Masks elements of IndexedSlices
.
sparse_matmul(...)
: Multiply matrix "a" by matrix "b".
sparse_maximum(...)
: Returns the element-wise max of two SparseTensors.
sparse_merge(...)
: Combines a batch of feature ids and values into a single SparseTensor
.
sparse_minimum(...)
: Returns the element-wise min of two SparseTensors.
sparse_placeholder(...)
: Inserts a placeholder for a sparse tensor that will be always fed.
sparse_reduce_sum(...)
: Computes the sum of elements across dimensions of a SparseTensor.
sparse_reduce_sum_sparse(...)
: Computes the sum of elements across dimensions of a SparseTensor.
sparse_reorder(...)
: Reorders a SparseTensor
into the canonical, row-major ordering.
sparse_reset_shape(...)
: Resets the shape of a SparseTensor
with indices and values unchanged.
sparse_reshape(...)
: Reshapes a SparseTensor
to represent values in a new dense shape.
sparse_retain(...)
: Retains specified non-empty values within a SparseTensor
.
sparse_segment_mean(...)
: Computes the mean along sparse segments of a tensor.
sparse_segment_sqrt_n(...)
: Computes the sum along sparse segments of a tensor divided by the sqrt of N.
sparse_segment_sum(...)
: Computes the sum along sparse segments of a tensor.
sparse_softmax(...)
: Applies softmax to a batched N-D SparseTensor
.
sparse_split(...)
: Split a SparseTensor
into num_split
tensors along axis
.
sparse_tensor_dense_matmul(...)
: Multiply SparseTensor (of rank 2) "A" by dense matrix "B".
sparse_tensor_to_dense(...)
: Converts a SparseTensor
into a dense tensor.
sparse_to_dense(...)
: Converts a sparse representation into a dense tensor.
sparse_to_indicator(...)
: Converts a SparseTensor
of ids into a dense bool indicator tensor.
sparse_transpose(...)
: Transposes a SparseTensor
split(...)
: Splits a tensor into sub tensors.
sqrt(...)
: Computes square root of x element-wise.
square(...)
: Computes square of x element-wise.
squared_difference(...)
: Returns (x - y)(x - y) element-wise.
squeeze(...)
: Removes dimensions of size 1 from the shape of a tensor.
stack(...)
: Stacks a list of rank-R
tensors into one rank-(R+1)
tensor.
stop_gradient(...)
: Stops gradient computation.
strided_slice(...)
: Extracts a strided slice from a tensor.
Constant string
string_join(...)
: Joins the strings in the given list of string tensors into one tensor;
string_split(...)
: Split elements of source
based on delimiter
into a SparseTensor
.
string_to_hash_bucket(...)
: Converts each string in the input Tensor to its hash mod by a number of buckets.
string_to_hash_bucket_fast(...)
: Converts each string in the input Tensor to its hash mod by a number of buckets.
string_to_hash_bucket_strong(...)
: Converts each string in the input Tensor to its hash mod by a number of buckets.
string_to_number(...)
: Converts each string in the input Tensor to the specified numeric type.
substr(...)
: Return substrings from Tensor
of strings.
subtract(...)
: Returns x - y element-wise.
summary
module: Tensor summaries for exporting information about a model.
svd(...)
: Computes the singular value decompositions of one or more matrices.
sysconfig
module: System configuration library.
tables_initializer(...)
: Returns an Op that initializes all tables of the default graph.
tan(...)
: Computes tan of x element-wise.
tanh(...)
: Computes hyperbolic tangent of x
element-wise.
tensordot(...)
: Tensor contraction of a and b along specified axes.
test
module: Testing. See the Testing guide.
tile(...)
: Constructs a tensor by tiling a given tensor.
to_bfloat16(...)
: Casts a tensor to type bfloat16
.
to_double(...)
: Casts a tensor to type float64
.
to_float(...)
: Casts a tensor to type float32
.
to_int32(...)
: Casts a tensor to type int32
.
to_int64(...)
: Casts a tensor to type int64
.
tools
module
trace(...)
: Compute the trace of a tensor x
.
train
module: Support for training models. See the Training guide.
trainable_variables(...)
: Returns all variables created with trainable=True
.
transpose(...)
: Transposes a
. Permutes the dimensions according to perm
.
truediv(...)
: Divides x / y elementwise (using Python 3 division operator semantics).
truncated_normal(...)
: Outputs random values from a truncated normal distribution.
class truncated_normal_initializer
: Initializer that generates a truncated normal distribution.
truncatediv(...)
: Returns x / y element-wise for integer types.
truncatemod(...)
: Returns element-wise remainder of division. This emulates C semantics where
tuple(...)
: Group tensors together.
Constant uint16
Constant uint8
class uniform_unit_scaling_initializer
: Initializer that generates tensors without scaling variance.
unique(...)
: Finds unique elements in a 1-D tensor.
unique_with_counts(...)
: Finds unique elements in a 1-D tensor.
unsorted_segment_sum(...)
: Computes the sum along segments of a tensor.
unstack(...)
: Unpacks the given dimension of a rank-R
tensor into rank-(R-1)
tensors.
user_ops
module: All user ops.
variable_axis_size_partitioner(...)
: Get a partitioner for VariableScope to keep shards below max_shard_bytes
.
variable_op_scope(...)
: Deprecated: context manager for defining an op that creates variables.
variable_scope(...)
: Returns a context manager for defining ops that creates variables (layers).
variables_initializer(...)
: Returns an Op that initializes a list of variables.
verify_tensor_all_finite(...)
: Assert that the tensor does not contain any NaN's or Inf's.
where(...)
: Return the elements, either from x
or y
, depending on the condition
.
while_loop(...)
: Repeat body
while the condition cond
is true.
write_file(...)
: Writes contents to the file at input filename. Creates file if not existing.
zeros(...)
: Creates a tensor with all elements set to zero.
class zeros_initializer
: Initializer that generates tensors initialized to 0.
zeros_like(...)
: Creates a tensor with all elements set to zero.
zeta(...)
: Compute the Hurwitz zeta function \(\zeta(x, q)\).
Defined in tensorflow/__init__.py
.
© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf