#include <training_ops.h>
Update relevant entries in '*var' and '*accum' according to the adagrad scheme.
That is for rows we have grad for, we update var and accum as follows: accum += grad * grad var -= lr * grad * (1 / sqrt(accum))
Arguments:
Optional attributes (see Attrs
):
True
, updating of the var and accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.Returns:
Output
: Same as "var". Constructors and Destructors | |
---|---|
SparseApplyAdagrad(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input lr, ::tensorflow::Input grad, ::tensorflow::Input indices) | |
SparseApplyAdagrad(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input lr, ::tensorflow::Input grad, ::tensorflow::Input indices, const SparseApplyAdagrad::Attrs & attrs) |
Public attributes | |
---|---|
out |
Public functions | |
---|---|
node() const | ::tensorflow::Node * |
operator::tensorflow::Input() const | |
operator::tensorflow::Output() const |
Public static functions | |
---|---|
UseLocking(bool x) |
Structs | |
---|---|
tensorflow::ops::SparseApplyAdagrad::Attrs | Optional attribute setters for SparseApplyAdagrad. |
::tensorflow::Output out
SparseApplyAdagrad( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input lr, ::tensorflow::Input grad, ::tensorflow::Input indices )
SparseApplyAdagrad( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input lr, ::tensorflow::Input grad, ::tensorflow::Input indices, const SparseApplyAdagrad::Attrs & attrs )
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Output() const
Attrs UseLocking( bool x )
© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/cc/class/tensorflow/ops/sparse-apply-adagrad.html