W3cubDocs

/TensorFlow C++

tensorflow::ops::FakeQuantWithMinMaxVars

#include <array_ops.h>

Fake-quantize the 'inputs' tensor of type float and shape [b, h, w, d] via.

Summary

global float scalars min and max to 'outputs' tensor of same shape as inputs.

[min; max] is the clamping range for the 'inputs' data. Op divides this range into 255 steps (total of 256 values), then replaces each 'inputs' value with the closest of the quantized step values.

This operation has a gradient and thus allows for training min and max values.

Arguments:

Returns:

Constructors and Destructors
FakeQuantWithMinMaxVars(const ::tensorflow::Scope & scope, ::tensorflow::Input inputs, ::tensorflow::Input min, ::tensorflow::Input max)
Public attributes
outputs
Public functions
node() const
::tensorflow::Node *
operator::tensorflow::Input() const
operator::tensorflow::Output() const

Public attributes

outputs

::tensorflow::Output outputs

Public functions

FakeQuantWithMinMaxVars

 FakeQuantWithMinMaxVars(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input inputs,
  ::tensorflow::Input min,
  ::tensorflow::Input max
)

node

::tensorflow::Node * node() const 

operator::tensorflow::Input

operator::tensorflow::Input() const 

operator::tensorflow::Output

operator::tensorflow::Output() const 

© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/cc/class/tensorflow/ops/fake-quant-with-min-max-vars.html