#include <array_ops.h>
BatchToSpace for 4-D tensors of type T.
This is a legacy version of the more general BatchToSpaceND.
Rearranges (permutes) data from batch into blocks of spatial data, followed by cropping. This is the reverse transformation of SpaceToBatch. More specifically, this op outputs a copy of the input tensor where values from the batch
dimension are moved in spatial blocks to the height
and width
dimensions, followed by cropping along the height
and width
dimensions.
Arguments:
[batch*block_size*block_size, height_pad/block_size, width_pad/block_size, depth]
. Note that the batch size of the input tensor must be divisible by block_size * block_size
.[2, 2]
. It specifies how many elements to crop from the intermediate result across the spatial dimensions as follows: crops = [[crop_top, crop_bottom], [crop_left, crop_right]]
Returns:
Output
: 4-D with shape [batch, height, width, depth]
, where: height = height_pad - crop_top - crop_bottom width = width_pad - crop_left - crop_right
The attr block_size
must be greater than one. It indicates the block size.
Some examples:
(1) For the following input of shape [4, 1, 1, 1]
and block_size of 2:
```prettyprint [[[[1]]], [[[2]]], [[[3]]], [[[4]]]] ```
The output tensor has shape [1, 2, 2, 1]
and value:
```prettyprint x = [[[[1], [2]], [[3], [4]]]] ```
(2) For the following input of shape [4, 1, 1, 3]
and block_size of 2:
```prettyprint [[[1, 2, 3]], [[4, 5, 6]], [[7, 8, 9]], [[10, 11, 12]]] ```
The output tensor has shape [1, 2, 2, 3]
and value:
```prettyprint x = [[[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]] ```
(3) For the following input of shape [4, 2, 2, 1]
and block_size of 2:
```prettyprint x = [[[[1], [3]], [[5], [7]]], [[[2], [4]], [[10], [12]]], [[[5], [7]], [[13], [15]]], [[[6], [8]], [[14], [16]]]] ```
The output tensor has shape [1, 4, 4, 1]
and value:
```prettyprint x = [[[1], [2], [3], [4]], [[5], [6], [7], [8]], [[9], [10], [11], [12]], [[13], [14], [15], [16]]] ```
(4) For the following input of shape [8, 1, 2, 1]
and block_size of 2:
```prettyprint x = [[[[1], [3]]], [[[9], [11]]], [[[2], [4]]], [[[10], [12]]], [[[5], [7]]], [[[13], [15]]], [[[6], [8]]], [[[14], [16]]]] ```
The output tensor has shape [2, 2, 4, 1]
and value:
```prettyprint x = [[[[1], [3]], [[5], [7]]], [[[2], [4]], [[10], [12]]], [[[5], [7]], [[13], [15]]], [[[6], [8]], [[14], [16]]]] ```
Constructors and Destructors | |
---|---|
BatchToSpace(const ::tensorflow::Scope & scope, ::tensorflow::Input input, ::tensorflow::Input crops, int64 block_size) |
Public attributes | |
---|---|
output |
Public functions | |
---|---|
node() const | ::tensorflow::Node * |
operator::tensorflow::Input() const | |
operator::tensorflow::Output() const |
::tensorflow::Output output
BatchToSpace( const ::tensorflow::Scope & scope, ::tensorflow::Input input, ::tensorflow::Input crops, int64 block_size )
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Output() const
© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/cc/class/tensorflow/ops/batch-to-space.html