class sklearn.random_projection.GaussianRandomProjection(n_components='auto', eps=0.1, random_state=None)
[source]
Reduce dimensionality through Gaussian random projection
The components of the random matrix are drawn from N(0, 1 / n_components).
Read more in the User Guide.
Parameters: |
n_components : int or ‘auto’, optional (default = ‘auto’) Dimensionality of the target projection space. n_components can be automatically adjusted according to the number of samples in the dataset and the bound given by the Johnson-Lindenstrauss lemma. In that case the quality of the embedding is controlled by the It should be noted that Johnson-Lindenstrauss lemma can yield very conservative estimated of the required number of components as it makes no assumption on the structure of the dataset. eps : strictly positive float, optional (default=0.1) Parameter to control the quality of the embedding according to the Johnson-Lindenstrauss lemma when n_components is set to ‘auto’. Smaller values lead to better embedding and higher number of dimensions (n_components) in the target projection space. random_state : integer, RandomState instance or None (default=None) Control the pseudo random number generator used to generate the matrix at fit time. |
---|---|
Attributes: |
n_component_ : int Concrete number of components computed when n_components=”auto”. components_ : numpy array of shape [n_components, n_features] Random matrix used for the projection. |
See also
fit (X[, y]) | Generate a sparse random projection matrix |
fit_transform (X[, y]) | Fit to data, then transform it. |
get_params ([deep]) | Get parameters for this estimator. |
set_params (**params) | Set the parameters of this estimator. |
transform (X[, y]) | Project the data by using matrix product with the random matrix |
__init__(n_components='auto', eps=0.1, random_state=None)
[source]
fit(X, y=None)
[source]
Generate a sparse random projection matrix
Parameters: |
X : numpy array or scipy.sparse of shape [n_samples, n_features] Training set: only the shape is used to find optimal random matrix dimensions based on the theory referenced in the afore mentioned papers. y : is not used: placeholder to allow for usage in a Pipeline. |
---|---|
Returns: |
self : |
fit_transform(X, y=None, **fit_params)
[source]
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
Parameters: |
X : numpy array of shape [n_samples, n_features] Training set. y : numpy array of shape [n_samples] Target values. |
---|---|
Returns: |
X_new : numpy array of shape [n_samples, n_features_new] Transformed array. |
get_params(deep=True)
[source]
Get parameters for this estimator.
Parameters: |
deep: boolean, optional : If True, will return the parameters for this estimator and contained subobjects that are estimators. |
---|---|
Returns: |
params : mapping of string to any Parameter names mapped to their values. |
set_params(**params)
[source]
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter>
so that it’s possible to update each component of a nested object.
Returns: | self : |
---|
transform(X, y=None)
[source]
Project the data by using matrix product with the random matrix
Parameters: |
X : numpy array or scipy.sparse of shape [n_samples, n_features] The input data to project into a smaller dimensional space. y : is not used: placeholder to allow for usage in a Pipeline. |
---|---|
Returns: |
X_new : numpy array or scipy sparse of shape [n_samples, n_components] Projected array. |
© 2007–2016 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.random_projection.GaussianRandomProjection.html