class sklearn.preprocessing.KernelCenterer
[source]
Center a kernel matrix
Let K(x, z) be a kernel defined by phi(x)^T phi(z), where phi is a function mapping x to a Hilbert space. KernelCenterer centers (i.e., normalize to have zero mean) the data without explicitly computing phi(x). It is equivalent to centering phi(x) with sklearn.preprocessing.StandardScaler(with_std=False).
Read more in the User Guide.
fit (K[, y]) | Fit KernelCenterer |
fit_transform (X[, y]) | Fit to data, then transform it. |
get_params ([deep]) | Get parameters for this estimator. |
set_params (**params) | Set the parameters of this estimator. |
transform (K[, y, copy]) | Center kernel matrix. |
__init__()
x.__init__(...) initializes x; see help(type(x)) for signature
fit(K, y=None)
[source]
Fit KernelCenterer
Parameters: |
K : numpy array of shape [n_samples, n_samples] Kernel matrix. |
---|---|
Returns: |
self : returns an instance of self. |
fit_transform(X, y=None, **fit_params)
[source]
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
Parameters: |
X : numpy array of shape [n_samples, n_features] Training set. y : numpy array of shape [n_samples] Target values. |
---|---|
Returns: |
X_new : numpy array of shape [n_samples, n_features_new] Transformed array. |
get_params(deep=True)
[source]
Get parameters for this estimator.
Parameters: |
deep: boolean, optional : If True, will return the parameters for this estimator and contained subobjects that are estimators. |
---|---|
Returns: |
params : mapping of string to any Parameter names mapped to their values. |
set_params(**params)
[source]
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter>
so that it’s possible to update each component of a nested object.
Returns: | self : |
---|
transform(K, y=None, copy=True)
[source]
Center kernel matrix.
Parameters: |
K : numpy array of shape [n_samples1, n_samples2] Kernel matrix. copy : boolean, optional, default True Set to False to perform inplace computation. |
---|---|
Returns: |
K_new : numpy array of shape [n_samples1, n_samples2] |
© 2007–2016 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KernelCenterer.html