class sklearn.pipeline.FeatureUnion(transformer_list, n_jobs=1, transformer_weights=None)
[source]
Concatenates results of multiple transformer objects.
This estimator applies a list of transformer objects in parallel to the input data, then concatenates the results. This is useful to combine several feature extraction mechanisms into a single transformer.
Parameters of the transformers may be set using its name and the parameter name separated by a ‘__’. A transformer may be replaced entirely by setting the parameter with its name to another transformer, or removed by setting to None
.
Read more in the User Guide.
Parameters: |
transformer_list: list of (string, transformer) tuples : List of transformer objects to be applied to the data. The first half of each tuple is the name of the transformer. n_jobs: int, optional : Number of jobs to run in parallel (default 1). transformer_weights: dict, optional : Multiplicative weights for features per transformer. Keys are transformer names, values the weights. |
---|
fit (X[, y]) | Fit all transformers using X. |
fit_transform (X[, y]) | Fit all transformers, transform the data and concatenate results. |
get_feature_names () | Get feature names from all transformers. |
get_params ([deep]) | Get parameters for this estimator. |
set_params (**kwargs) | Set the parameters of this estimator. |
transform (X) | Transform X separately by each transformer, concatenate results. |
__init__(transformer_list, n_jobs=1, transformer_weights=None)
[source]
fit(X, y=None)
[source]
Fit all transformers using X.
Parameters: |
X : iterable or array-like, depending on transformers Input data, used to fit transformers. y : array-like, shape (n_samples, ...), optional Targets for supervised learning. |
---|---|
Returns: |
self : FeatureUnion This estimator |
fit_transform(X, y=None, **fit_params)
[source]
Fit all transformers, transform the data and concatenate results.
Parameters: |
X : iterable or array-like, depending on transformers Input data to be transformed. y : array-like, shape (n_samples, ...), optional Targets for supervised learning. |
---|---|
Returns: |
X_t : array-like or sparse matrix, shape (n_samples, sum_n_components) hstack of results of transformers. sum_n_components is the sum of n_components (output dimension) over transformers. |
get_feature_names()
[source]
Get feature names from all transformers.
Returns: |
feature_names : list of strings Names of the features produced by transform. |
---|
get_params(deep=True)
[source]
Get parameters for this estimator.
Parameters: |
deep: boolean, optional : If True, will return the parameters for this estimator and contained subobjects that are estimators. |
---|---|
Returns: |
params : mapping of string to any Parameter names mapped to their values. |
set_params(**kwargs)
[source]
Set the parameters of this estimator.
Valid parameter keys can be listed with get_params()
.
Returns: | self : |
---|
transform(X)
[source]
Transform X separately by each transformer, concatenate results.
Parameters: |
X : iterable or array-like, depending on transformers Input data to be transformed. |
---|---|
Returns: |
X_t : array-like or sparse matrix, shape (n_samples, sum_n_components) hstack of results of transformers. sum_n_components is the sum of n_components (output dimension) over transformers. |
sklearn.pipeline.FeatureUnion
© 2007–2016 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.pipeline.FeatureUnion.html