class sklearn.neighbors.KernelDensity(bandwidth=1.0, algorithm='auto', kernel='gaussian', metric='euclidean', atol=0, rtol=0, breadth_first=True, leaf_size=40, metric_params=None)
[source]
Kernel Density Estimation
Read more in the User Guide.
Parameters: |
bandwidth : float The bandwidth of the kernel. algorithm : string The tree algorithm to use. Valid options are [‘kd_tree’|’ball_tree’|’auto’]. Default is ‘auto’. kernel : string The kernel to use. Valid kernels are [‘gaussian’|’tophat’|’epanechnikov’|’exponential’|’linear’|’cosine’] Default is ‘gaussian’. metric : string The distance metric to use. Note that not all metrics are valid with all algorithms. Refer to the documentation of atol : float The desired absolute tolerance of the result. A larger tolerance will generally lead to faster execution. Default is 0. rtol : float The desired relative tolerance of the result. A larger tolerance will generally lead to faster execution. Default is 1E-8. breadth_first : boolean If true (default), use a breadth-first approach to the problem. Otherwise use a depth-first approach. leaf_size : int Specify the leaf size of the underlying tree. See metric_params : dict Additional parameters to be passed to the tree for use with the metric. For more information, see the documentation of |
---|
fit (X[, y]) | Fit the Kernel Density model on the data. |
get_params ([deep]) | Get parameters for this estimator. |
sample ([n_samples, random_state]) | Generate random samples from the model. |
score (X[, y]) | Compute the total log probability under the model. |
score_samples (X) | Evaluate the density model on the data. |
set_params (**params) | Set the parameters of this estimator. |
__init__(bandwidth=1.0, algorithm='auto', kernel='gaussian', metric='euclidean', atol=0, rtol=0, breadth_first=True, leaf_size=40, metric_params=None)
[source]
fit(X, y=None)
[source]
Fit the Kernel Density model on the data.
Parameters: |
X : array_like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. |
---|
get_params(deep=True)
[source]
Get parameters for this estimator.
Parameters: |
deep: boolean, optional : If True, will return the parameters for this estimator and contained subobjects that are estimators. |
---|---|
Returns: |
params : mapping of string to any Parameter names mapped to their values. |
sample(n_samples=1, random_state=None)
[source]
Generate random samples from the model.
Currently, this is implemented only for gaussian and tophat kernels.
Parameters: |
n_samples : int, optional Number of samples to generate. Defaults to 1. random_state : RandomState or an int seed (0 by default) A random number generator instance. |
---|---|
Returns: |
X : array_like, shape (n_samples, n_features) List of samples. |
score(X, y=None)
[source]
Compute the total log probability under the model.
Parameters: |
X : array_like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. |
---|---|
Returns: |
logprob : float Total log-likelihood of the data in X. |
score_samples(X)
[source]
Evaluate the density model on the data.
Parameters: |
X : array_like, shape (n_samples, n_features) An array of points to query. Last dimension should match dimension of training data (n_features). |
---|---|
Returns: |
density : ndarray, shape (n_samples,) The array of log(density) evaluations. |
set_params(**params)
[source]
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter>
so that it’s possible to update each component of a nested object.
Returns: | self : |
---|
sklearn.neighbors.KernelDensity
© 2007–2016 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KernelDensity.html