class sklearn.multioutput.MultiOutputRegressor(estimator, n_jobs=1)
[source]
Multi target regression
This strategy consists of fitting one regressor per target. This is a simple strategy for extending regressors that do not natively support multi-target regression.
Parameters: |
estimator : estimator object An estimator object implementing n_jobs : int, optional, default=1 The number of jobs to run in parallel for |
---|
fit (X, y[, sample_weight]) | Fit the model to data. |
get_params ([deep]) | Get parameters for this estimator. |
predict (X) | Predict multi-output variable using a model trained for each target variable. |
score (X, y[, sample_weight]) | Returns the coefficient of determination R^2 of the prediction. |
set_params (**params) | Set the parameters of this estimator. |
__init__(estimator, n_jobs=1)
[source]
fit(X, y, sample_weight=None)
[source]
Fit the model to data. Fit a separate model for each output variable.
Parameters: |
X : (sparse) array-like, shape (n_samples, n_features) Data. y : (sparse) array-like, shape (n_samples, n_outputs) Multi-output targets. An indicator matrix turns on multilabel estimation. sample_weight : array-like, shape = (n_samples) or None Sample weights. If None, then samples are equally weighted. Only supported if the underlying regressor supports sample weights. |
---|---|
Returns: |
self : object Returns self. |
get_params(deep=True)
[source]
Get parameters for this estimator.
Parameters: |
deep: boolean, optional : If True, will return the parameters for this estimator and contained subobjects that are estimators. |
---|---|
Returns: |
params : mapping of string to any Parameter names mapped to their values. |
predict(X)
[source]
Parameters: |
X : (sparse) array-like, shape (n_samples, n_features) Data. |
---|---|
Returns: |
y : (sparse) array-like, shape (n_samples, n_outputs) Multi-output targets predicted across multiple predictors. Note: Separate models are generated for each predictor. |
score(X, y, sample_weight=None)
[source]
Returns the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.
Parameters: |
X : array-like, shape (n_samples, n_features) Test samples. y : array-like, shape (n_samples) or (n_samples, n_outputs) True values for X. sample_weight : array-like, shape [n_samples], optional Sample weights. |
---|---|
Returns: |
score : float R^2 of self.predict(X) wrt. y. |
R^2 is calculated by weighting all the targets equally using multioutput=’uniform_average’
.
set_params(**params)
[source]
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter>
so that it’s possible to update each component of a nested object.
Returns: | self : |
---|
sklearn.multioutput.MultiOutputRegressor
© 2007–2016 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.multioutput.MultiOutputRegressor.html