sklearn.metrics.fbeta_score(y_true, y_pred, beta, labels=None, pos_label=1, average='binary', sample_weight=None)
[source]
Compute the F-beta score
The F-beta score is the weighted harmonic mean of precision and recall, reaching its optimal value at 1 and its worst value at 0.
The beta
parameter determines the weight of precision in the combined score. beta < 1
lends more weight to precision, while beta > 1
favors recall (beta -> 0
considers only precision, beta -> inf
only recall).
Read more in the User Guide.
Parameters: |
y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. beta: float : Weight of precision in harmonic mean. labels : list, optional The set of labels to include when Changed in version 0.17: parameter labels improved for multiclass problem. pos_label : str or int, 1 by default The class to report if average : string, [None, ‘binary’ (default), ‘micro’, ‘macro’, ‘samples’, ‘weighted’] This parameter is required for multiclass/multilabel targets. If
sample_weight : array-like of shape = [n_samples], optional Sample weights. |
---|---|
Returns: |
fbeta_score : float (if average is not None) or array of float, shape = [n_unique_labels] F-beta score of the positive class in binary classification or weighted average of the F-beta score of each class for the multiclass task. |
[R206] | R. Baeza-Yates and B. Ribeiro-Neto (2011). Modern Information Retrieval. Addison Wesley, pp. 327-328. |
[R207] | Wikipedia entry for the F1-score |
>>> from sklearn.metrics import fbeta_score >>> y_true = [0, 1, 2, 0, 1, 2] >>> y_pred = [0, 2, 1, 0, 0, 1] >>> fbeta_score(y_true, y_pred, average='macro', beta=0.5) ... 0.23... >>> fbeta_score(y_true, y_pred, average='micro', beta=0.5) ... 0.33... >>> fbeta_score(y_true, y_pred, average='weighted', beta=0.5) ... 0.23... >>> fbeta_score(y_true, y_pred, average=None, beta=0.5) ... array([ 0.71..., 0. , 0. ])
© 2007–2016 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.fbeta_score.html