class sklearn.linear_model.Perceptron(penalty=None, alpha=0.0001, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, eta0=1.0, n_jobs=1, random_state=0, class_weight=None, warm_start=False)
[source]
Read more in the User Guide.
Parameters: |
penalty : None, ‘l2’ or ‘l1’ or ‘elasticnet’ The penalty (aka regularization term) to be used. Defaults to None. alpha : float Constant that multiplies the regularization term if regularization is used. Defaults to 0.0001 fit_intercept : bool Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True. n_iter : int, optional The number of passes over the training data (aka epochs). Defaults to 5. shuffle : bool, optional, default True Whether or not the training data should be shuffled after each epoch. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. verbose : integer, optional The verbosity level n_jobs : integer, optional The number of CPUs to use to do the OVA (One Versus All, for multi-class problems) computation. -1 means ‘all CPUs’. Defaults to 1. eta0 : double Constant by which the updates are multiplied. Defaults to 1. class_weight : dict, {class_label: weight} or “balanced” or None, optional Preset for the class_weight fit parameter. Weights associated with classes. If not given, all classes are supposed to have weight one. The “balanced” mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. |
---|---|
Attributes: |
coef_ : array, shape = [1, n_features] if n_classes == 2 else [n_classes, n_features] Weights assigned to the features. intercept_ : array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function. |
See also
Perceptron
and SGDClassifier
share the same underlying implementation. In fact, Perceptron()
is equivalent to SGDClassifier(loss=”perceptron”, eta0=1, learning_rate=”constant”, penalty=None)
.
https://en.wikipedia.org/wiki/Perceptron and references therein.
decision_function (X) | Predict confidence scores for samples. |
densify () | Convert coefficient matrix to dense array format. |
fit (X, y[, coef_init, intercept_init, ...]) | Fit linear model with Stochastic Gradient Descent. |
fit_transform (X[, y]) | Fit to data, then transform it. |
get_params ([deep]) | Get parameters for this estimator. |
partial_fit (X, y[, classes, sample_weight]) | Fit linear model with Stochastic Gradient Descent. |
predict (X) | Predict class labels for samples in X. |
score (X, y[, sample_weight]) | Returns the mean accuracy on the given test data and labels. |
set_params (*args, **kwargs) | |
sparsify () | Convert coefficient matrix to sparse format. |
transform (*args, **kwargs) | DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19. |
__init__(penalty=None, alpha=0.0001, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, eta0=1.0, n_jobs=1, random_state=0, class_weight=None, warm_start=False)
[source]
decision_function(X)
[source]
Predict confidence scores for samples.
The confidence score for a sample is the signed distance of that sample to the hyperplane.
Parameters: |
X : {array-like, sparse matrix}, shape = (n_samples, n_features) Samples. |
---|---|
Returns: |
array, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes) : Confidence scores per (sample, class) combination. In the binary case, confidence score for self.classes_[1] where >0 means this class would be predicted. |
densify()
[source]
Convert coefficient matrix to dense array format.
Converts the coef_
member (back) to a numpy.ndarray. This is the default format of coef_
and is required for fitting, so calling this method is only required on models that have previously been sparsified; otherwise, it is a no-op.
Returns: | self: estimator : |
---|
fit(X, y, coef_init=None, intercept_init=None, sample_weight=None)
[source]
Fit linear model with Stochastic Gradient Descent.
Parameters: |
X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data y : numpy array, shape (n_samples,) Target values coef_init : array, shape (n_classes, n_features) The initial coefficients to warm-start the optimization. intercept_init : array, shape (n_classes,) The initial intercept to warm-start the optimization. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples. If not provided, uniform weights are assumed. These weights will be multiplied with class_weight (passed through the constructor) if class_weight is specified |
---|---|
Returns: |
self : returns an instance of self. |
fit_transform(X, y=None, **fit_params)
[source]
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
Parameters: |
X : numpy array of shape [n_samples, n_features] Training set. y : numpy array of shape [n_samples] Target values. |
---|---|
Returns: |
X_new : numpy array of shape [n_samples, n_features_new] Transformed array. |
get_params(deep=True)
[source]
Get parameters for this estimator.
Parameters: |
deep: boolean, optional : If True, will return the parameters for this estimator and contained subobjects that are estimators. |
---|---|
Returns: |
params : mapping of string to any Parameter names mapped to their values. |
partial_fit(X, y, classes=None, sample_weight=None)
[source]
Fit linear model with Stochastic Gradient Descent.
Parameters: |
X : {array-like, sparse matrix}, shape (n_samples, n_features) Subset of the training data y : numpy array, shape (n_samples,) Subset of the target values classes : array, shape (n_classes,) Classes across all calls to partial_fit. Can be obtained by via sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples. If not provided, uniform weights are assumed. |
---|---|
Returns: |
self : returns an instance of self. |
predict(X)
[source]
Predict class labels for samples in X.
Parameters: |
X : {array-like, sparse matrix}, shape = [n_samples, n_features] Samples. |
---|---|
Returns: |
C : array, shape = [n_samples] Predicted class label per sample. |
score(X, y, sample_weight=None)
[source]
Returns the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
Parameters: |
X : array-like, shape = (n_samples, n_features) Test samples. y : array-like, shape = (n_samples) or (n_samples, n_outputs) True labels for X. sample_weight : array-like, shape = [n_samples], optional Sample weights. |
---|---|
Returns: |
score : float Mean accuracy of self.predict(X) wrt. y. |
sparsify()
[source]
Convert coefficient matrix to sparse format.
Converts the coef_
member to a scipy.sparse matrix, which for L1-regularized models can be much more memory- and storage-efficient than the usual numpy.ndarray representation.
The intercept_
member is not converted.
Returns: | self: estimator : |
---|
For non-sparse models, i.e. when there are not many zeros in coef_
, this may actually increase memory usage, so use this method with care. A rule of thumb is that the number of zero elements, which can be computed with (coef_ == 0).sum()
, must be more than 50% for this to provide significant benefits.
After calling this method, further fitting with the partial_fit method (if any) will not work until you call densify.
transform(*args, **kwargs)
[source]
DEPRECATED: Support to use estimators as feature selectors will be removed in version 0.19. Use SelectFromModel instead.
Reduce X to its most important features.
Usescoef_
or feature_importances_
to determine the most important features. For models with a coef_
for each class, the absolute sum over the classes is used. Parameters: |
X : array or scipy sparse matrix of shape [n_samples, n_features] The input samples.
|
---|---|
Returns: |
X_r : array of shape [n_samples, n_selected_features] The input samples with only the selected features. |
sklearn.linear_model.Perceptron
© 2007–2016 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html