sklearn.linear_model.lars_path(X, y, Xy=None, Gram=None, max_iter=500, alpha_min=0, method='lar', copy_X=True, eps=2.2204460492503131e-16, copy_Gram=True, verbose=0, return_path=True, return_n_iter=False, positive=False)
[source]
Compute Least Angle Regression or Lasso path using LARS algorithm [1]
The optimization objective for the case method=’lasso’ is:
(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1
in the case of method=’lars’, the objective function is only known in the form of an implicit equation (see discussion in [1])
Read more in the User Guide.
Parameters: |
X : array, shape: (n_samples, n_features) Input data. y : array, shape: (n_samples) Input targets. positive : boolean (default=False) Restrict coefficients to be >= 0. When using this option together with method ‘lasso’ the model coefficients will not converge to the ordinary-least-squares solution for small values of alpha (neither will they when using method ‘lar’ ..). Only coefficients up to the smallest alpha value ( max_iter : integer, optional (default=500) Maximum number of iterations to perform, set to infinity for no limit. Gram : None, ‘auto’, array, shape: (n_features, n_features), optional Precomputed Gram matrix (X’ * X), if alpha_min : float, optional (default=0) Minimum correlation along the path. It corresponds to the regularization parameter alpha parameter in the Lasso. method : {‘lar’, ‘lasso’}, optional (default=’lar’) Specifies the returned model. Select eps : float, optional (default=``np.finfo(np.float).eps``) The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. copy_X : bool, optional (default=True) If copy_Gram : bool, optional (default=True) If verbose : int (default=0) Controls output verbosity. return_path : bool, optional (default=True) If return_n_iter : bool, optional (default=False) Whether to return the number of iterations. |
---|---|
Returns: |
alphas : array, shape: [n_alphas + 1] Maximum of covariances (in absolute value) at each iteration. active : array, shape [n_alphas] Indices of active variables at the end of the path. coefs : array, shape (n_features, n_alphas + 1) Coefficients along the path n_iter : int Number of iterations run. Returned only if return_n_iter is set to True. |
See also
lasso_path
, LassoLars
, Lars
, LassoLarsCV
, LarsCV
, sklearn.decomposition.sparse_encode
[R182] | “Least Angle Regression”, Effron et al. http://statweb.stanford.edu/~tibs/ftp/lars.pdf |
[R183] | Wikipedia entry on the Least-angle regression |
[R184] | Wikipedia entry on the Lasso |
sklearn.linear_model.lars_path
© 2007–2016 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.lars_path.html