class sklearn.kernel_approximation.Nystroem(kernel='rbf', gamma=None, coef0=1, degree=3, kernel_params=None, n_components=100, random_state=None)
[source]
Approximate a kernel map using a subset of the training data.
Constructs an approximate feature map for an arbitrary kernel using a subset of the data as basis.
Read more in the User Guide.
Parameters: |
kernel : string or callable, default=”rbf” Kernel map to be approximated. A callable should accept two arguments and the keyword arguments passed to this object as kernel_params, and should return a floating point number. n_components : int Number of features to construct. How many data points will be used to construct the mapping. gamma : float, default=None Gamma parameter for the RBF, polynomial, exponential chi2 and sigmoid kernels. Interpretation of the default value is left to the kernel; see the documentation for sklearn.metrics.pairwise. Ignored by other kernels. degree : float, default=3 Degree of the polynomial kernel. Ignored by other kernels. coef0 : float, default=1 Zero coefficient for polynomial and sigmoid kernels. Ignored by other kernels. kernel_params : mapping of string to any, optional Additional parameters (keyword arguments) for kernel function passed as callable object. random_state : {int, RandomState}, optional If int, random_state is the seed used by the random number generator; if RandomState instance, random_state is the random number generator. |
---|---|
Attributes: |
components_ : array, shape (n_components, n_features) Subset of training points used to construct the feature map. component_indices_ : array, shape (n_components) Indices of normalization_ : array, shape (n_components, n_components) Normalization matrix needed for embedding. Square root of the kernel matrix on |
See also
RBFSampler
sklearn.metrics.pairwise.kernel_metrics
fit (X[, y]) | Fit estimator to data. |
fit_transform (X[, y]) | Fit to data, then transform it. |
get_params ([deep]) | Get parameters for this estimator. |
set_params (**params) | Set the parameters of this estimator. |
transform (X) | Apply feature map to X. |
__init__(kernel='rbf', gamma=None, coef0=1, degree=3, kernel_params=None, n_components=100, random_state=None)
[source]
fit(X, y=None)
[source]
Fit estimator to data.
Samples a subset of training points, computes kernel on these and computes normalization matrix.
Parameters: |
X : array-like, shape=(n_samples, n_feature) Training data. |
---|
fit_transform(X, y=None, **fit_params)
[source]
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
Parameters: |
X : numpy array of shape [n_samples, n_features] Training set. y : numpy array of shape [n_samples] Target values. |
---|---|
Returns: |
X_new : numpy array of shape [n_samples, n_features_new] Transformed array. |
get_params(deep=True)
[source]
Get parameters for this estimator.
Parameters: |
deep: boolean, optional : If True, will return the parameters for this estimator and contained subobjects that are estimators. |
---|---|
Returns: |
params : mapping of string to any Parameter names mapped to their values. |
set_params(**params)
[source]
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter>
so that it’s possible to update each component of a nested object.
Returns: | self : |
---|
transform(X)
[source]
Apply feature map to X.
Computes an approximate feature map using the kernel between some training points and X.
Parameters: |
X : array-like, shape=(n_samples, n_features) Data to transform. |
---|---|
Returns: |
X_transformed : array, shape=(n_samples, n_components) Transformed data. |
sklearn.kernel_approximation.Nystroem
© 2007–2016 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.Nystroem.html