class sklearn.gaussian_process.kernels.Hyperparameter
[source]
A kernel hyperparameter’s specification in form of a namedtuple.
New in version 0.18.
Attributes: |
name : string The name of the hyperparameter. Note that a kernel using a hyperparameter with name “x” must have the attributes self.x and self.x_bounds value_type : string The type of the hyperparameter. Currently, only “numeric” hyperparameters are supported. bounds : pair of floats >= 0 or “fixed” The lower and upper bound on the parameter. If n_elements>1, a pair of 1d array with n_elements each may be given alternatively. If the string “fixed” is passed as bounds, the hyperparameter’s value cannot be changed. n_elements : int, default=1 The number of elements of the hyperparameter value. Defaults to 1, which corresponds to a scalar hyperparameter. n_elements > 1 corresponds to a hyperparameter which is vector-valued, such as, e.g., anisotropic length-scales. fixed : bool, default: None Whether the value of this hyperparameter is fixed, i.e., cannot be changed during hyperparameter tuning. If None is passed, the “fixed” is derived based on the given bounds. |
---|
count (...) | |
index ((value, [start, ...) | Raises ValueError if the value is not present. |
__init__()
x.__init__(...) initializes x; see help(type(x)) for signature
bounds
Alias for field number 2
count(value) → integer -- return number of occurrences of value
fixed
Alias for field number 4
index(value[, start[, stop]]) → integer -- return first index of value.
Raises ValueError if the value is not present.
n_elements
Alias for field number 3
name
Alias for field number 0
value_type
Alias for field number 1
© 2007–2016 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.Hyperparameter.html