class sklearn.feature_selection.SelectFromModel(estimator, threshold=None, prefit=False)
[source]
Meta-transformer for selecting features based on importance weights.
New in version 0.17.
Parameters: |
estimator : object The base estimator from which the transformer is built. This can be both a fitted (if threshold : string, float, optional default None The threshold value to use for feature selection. Features whose importance is greater or equal are kept while the others are discarded. If “median” (resp. “mean”), then the prefit : bool, default False Whether a prefit model is expected to be passed into the constructor directly or not. If True, |
---|---|
Attributes: |
`estimator_`: an estimator : The base estimator from which the transformer is built. This is stored only when a non-fitted estimator is passed to the `threshold_`: float : The threshold value used for feature selection. |
fit (X[, y]) | Fit the SelectFromModel meta-transformer. |
fit_transform (X[, y]) | Fit to data, then transform it. |
get_params ([deep]) | Get parameters for this estimator. |
get_support ([indices]) | Get a mask, or integer index, of the features selected |
inverse_transform (X) | Reverse the transformation operation |
partial_fit (X[, y]) | Fit the SelectFromModel meta-transformer only once. |
set_params (**params) | Set the parameters of this estimator. |
transform (X) | Reduce X to the selected features. |
__init__(estimator, threshold=None, prefit=False)
[source]
fit(X, y=None, **fit_params)
[source]
Fit the SelectFromModel meta-transformer.
Parameters: |
X : array-like of shape (n_samples, n_features) The training input samples. y : array-like, shape (n_samples,) The target values (integers that correspond to classes in classification, real numbers in regression). **fit_params : Other estimator specific parameters |
---|---|
Returns: |
self : object Returns self. |
fit_transform(X, y=None, **fit_params)
[source]
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
Parameters: |
X : numpy array of shape [n_samples, n_features] Training set. y : numpy array of shape [n_samples] Target values. |
---|---|
Returns: |
X_new : numpy array of shape [n_samples, n_features_new] Transformed array. |
get_params(deep=True)
[source]
Get parameters for this estimator.
Parameters: |
deep: boolean, optional : If True, will return the parameters for this estimator and contained subobjects that are estimators. |
---|---|
Returns: |
params : mapping of string to any Parameter names mapped to their values. |
get_support(indices=False)
[source]
Get a mask, or integer index, of the features selected
Parameters: |
indices : boolean (default False) If True, the return value will be an array of integers, rather than a boolean mask. |
---|---|
Returns: |
support : array An index that selects the retained features from a feature vector. If |
inverse_transform(X)
[source]
Reverse the transformation operation
Parameters: |
X : array of shape [n_samples, n_selected_features] The input samples. |
---|---|
Returns: |
X_r : array of shape [n_samples, n_original_features]
|
partial_fit(X, y=None, **fit_params)
[source]
Fit the SelectFromModel meta-transformer only once.
Parameters: |
X : array-like of shape (n_samples, n_features) The training input samples. y : array-like, shape (n_samples,) The target values (integers that correspond to classes in classification, real numbers in regression). **fit_params : Other estimator specific parameters |
---|---|
Returns: |
self : object Returns self. |
set_params(**params)
[source]
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter>
so that it’s possible to update each component of a nested object.
Returns: | self : |
---|
transform(X)
[source]
Reduce X to the selected features.
Parameters: |
X : array of shape [n_samples, n_features] The input samples. |
---|---|
Returns: |
X_r : array of shape [n_samples, n_selected_features] The input samples with only the selected features. |
sklearn.feature_selection.SelectFromModel
© 2007–2016 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFromModel.html