class sklearn.feature_selection.SelectFdr(score_func=, alpha=0.05)
[source]
Filter: Select the p-values for an estimated false discovery rate
This uses the Benjamini-Hochberg procedure. alpha
is an upper bound on the expected false discovery rate.
Read more in the User Guide.
Parameters: |
score_func : callable Function taking two arrays X and y, and returning a pair of arrays (scores, pvalues). Default is f_classif (see below “See also”). The default function only works with classification tasks. alpha : float, optional The highest uncorrected p-value for features to keep. |
---|---|
Attributes: |
scores_ : array-like, shape=(n_features,) Scores of features. pvalues_ : array-like, shape=(n_features,) p-values of feature scores. |
See also
f_classif
mutual_info_classif
chi2
f_regression
mutual_info_regression
SelectPercentile
SelectKBest
SelectFpr
SelectFwe
GenericUnivariateSelect
https://en.wikipedia.org/wiki/False_discovery_rate
fit (X, y) | Run score function on (X, y) and get the appropriate features. |
fit_transform (X[, y]) | Fit to data, then transform it. |
get_params ([deep]) | Get parameters for this estimator. |
get_support ([indices]) | Get a mask, or integer index, of the features selected |
inverse_transform (X) | Reverse the transformation operation |
set_params (**params) | Set the parameters of this estimator. |
transform (X) | Reduce X to the selected features. |
__init__(score_func=, alpha=0.05)
[source]
fit(X, y)
[source]
Run score function on (X, y) and get the appropriate features.
Parameters: |
X : array-like, shape = [n_samples, n_features] The training input samples. y : array-like, shape = [n_samples] The target values (class labels in classification, real numbers in regression). |
---|---|
Returns: |
self : object Returns self. |
fit_transform(X, y=None, **fit_params)
[source]
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
Parameters: |
X : numpy array of shape [n_samples, n_features] Training set. y : numpy array of shape [n_samples] Target values. |
---|---|
Returns: |
X_new : numpy array of shape [n_samples, n_features_new] Transformed array. |
get_params(deep=True)
[source]
Get parameters for this estimator.
Parameters: |
deep: boolean, optional : If True, will return the parameters for this estimator and contained subobjects that are estimators. |
---|---|
Returns: |
params : mapping of string to any Parameter names mapped to their values. |
get_support(indices=False)
[source]
Get a mask, or integer index, of the features selected
Parameters: |
indices : boolean (default False) If True, the return value will be an array of integers, rather than a boolean mask. |
---|---|
Returns: |
support : array An index that selects the retained features from a feature vector. If |
inverse_transform(X)
[source]
Reverse the transformation operation
Parameters: |
X : array of shape [n_samples, n_selected_features] The input samples. |
---|---|
Returns: |
X_r : array of shape [n_samples, n_original_features]
|
set_params(**params)
[source]
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter>
so that it’s possible to update each component of a nested object.
Returns: | self : |
---|
transform(X)
[source]
Reduce X to the selected features.
Parameters: |
X : array of shape [n_samples, n_features] The input samples. |
---|---|
Returns: |
X_r : array of shape [n_samples, n_selected_features] The input samples with only the selected features. |
© 2007–2016 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFdr.html