sklearn.feature_selection.f_regression(X, y, center=True)
[source]
Univariate linear regression tests.
Quick linear model for testing the effect of a single regressor, sequentially for many regressors.
This is done in 2 steps:
Read more in the User Guide.
Parameters: |
X : {array-like, sparse matrix} shape = (n_samples, n_features) The set of regressors that will be tested sequentially. y : array of shape(n_samples). The data matrix center : True, bool, If true, X and y will be centered. |
---|---|
Returns: |
F : array, shape=(n_features,) F values of features. pval : array, shape=(n_features,) p-values of F-scores. |
sklearn.feature_selection.f_regression
© 2007–2016 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.html