class sklearn.dummy.DummyClassifier(strategy='stratified', random_state=None, constant=None)
[source]
DummyClassifier is a classifier that makes predictions using simple rules.
This classifier is useful as a simple baseline to compare with other (real) classifiers. Do not use it for real problems.
Read more in the User Guide.
Parameters: |
strategy : str, default=”stratified” Strategy to use to generate predictions.
random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use. constant : int or str or array of shape = [n_outputs] The explicit constant as predicted by the “constant” strategy. This parameter is useful only for the “constant” strategy. |
---|---|
Attributes: |
classes_ : array or list of array of shape = [n_classes] Class labels for each output. n_classes_ : array or list of array of shape = [n_classes] Number of label for each output. class_prior_ : array or list of array of shape = [n_classes] Probability of each class for each output. n_outputs_ : int, Number of outputs. outputs_2d_ : bool, True if the output at fit is 2d, else false. sparse_output_ : bool, True if the array returned from predict is to be in sparse CSC format. Is automatically set to True if the input y is passed in sparse format. |
fit (X, y[, sample_weight]) | Fit the random classifier. |
get_params ([deep]) | Get parameters for this estimator. |
predict (X) | Perform classification on test vectors X. |
predict_log_proba (X) | Return log probability estimates for the test vectors X. |
predict_proba (X) | Return probability estimates for the test vectors X. |
score (X, y[, sample_weight]) | Returns the mean accuracy on the given test data and labels. |
set_params (**params) | Set the parameters of this estimator. |
__init__(strategy='stratified', random_state=None, constant=None)
[source]
fit(X, y, sample_weight=None)
[source]
Fit the random classifier.
Parameters: |
X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_outputs] Target values. sample_weight : array-like of shape = [n_samples], optional Sample weights. |
---|---|
Returns: |
self : object Returns self. |
get_params(deep=True)
[source]
Get parameters for this estimator.
Parameters: |
deep: boolean, optional : If True, will return the parameters for this estimator and contained subobjects that are estimators. |
---|---|
Returns: |
params : mapping of string to any Parameter names mapped to their values. |
predict(X)
[source]
Perform classification on test vectors X.
Parameters: |
X : {array-like, sparse matrix}, shape = [n_samples, n_features] Input vectors, where n_samples is the number of samples and n_features is the number of features. |
---|---|
Returns: |
y : array, shape = [n_samples] or [n_samples, n_outputs] Predicted target values for X. |
predict_log_proba(X)
[source]
Return log probability estimates for the test vectors X.
Parameters: |
X : {array-like, sparse matrix}, shape = [n_samples, n_features] Input vectors, where n_samples is the number of samples and n_features is the number of features. |
---|---|
Returns: |
P : array-like or list of array-like of shape = [n_samples, n_classes] Returns the log probability of the sample for each class in the model, where classes are ordered arithmetically for each output. |
predict_proba(X)
[source]
Return probability estimates for the test vectors X.
Parameters: |
X : {array-like, sparse matrix}, shape = [n_samples, n_features] Input vectors, where n_samples is the number of samples and n_features is the number of features. |
---|---|
Returns: |
P : array-like or list of array-lke of shape = [n_samples, n_classes] Returns the probability of the sample for each class in the model, where classes are ordered arithmetically, for each output. |
score(X, y, sample_weight=None)
[source]
Returns the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
Parameters: |
X : array-like, shape = (n_samples, n_features) Test samples. y : array-like, shape = (n_samples) or (n_samples, n_outputs) True labels for X. sample_weight : array-like, shape = [n_samples], optional Sample weights. |
---|---|
Returns: |
score : float Mean accuracy of self.predict(X) wrt. y. |
set_params(**params)
[source]
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter>
so that it’s possible to update each component of a nested object.
Returns: | self : |
---|
© 2007–2016 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html