class sklearn.decomposition.SparseCoder(dictionary, transform_algorithm='omp', transform_n_nonzero_coefs=None, transform_alpha=None, split_sign=False, n_jobs=1)
[source]
Sparse coding
Finds a sparse representation of data against a fixed, precomputed dictionary.
Each row of the result is the solution to a sparse coding problem. The goal is to find a sparse array code
such that:
X ~= code * dictionary
Read more in the User Guide.
Parameters: |
dictionary : array, [n_components, n_features] The dictionary atoms used for sparse coding. Lines are assumed to be normalized to unit norm. transform_algorithm : {‘lasso_lars’, ‘lasso_cd’, ‘lars’, ‘omp’, ‘threshold’} Algorithm used to transform the data: lars: uses the least angle regression method (linear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal matching pursuit to estimate the sparse solution threshold: squashes to zero all coefficients less than alpha from the projection transform_n_nonzero_coefs : int, Number of nonzero coefficients to target in each column of the solution. This is only used by transform_alpha : float, 1. by default If split_sign : bool, False by default Whether to split the sparse feature vector into the concatenation of its negative part and its positive part. This can improve the performance of downstream classifiers. n_jobs : int, number of parallel jobs to run |
---|---|
Attributes: |
components_ : array, [n_components, n_features] The unchanged dictionary atoms |
See also
DictionaryLearning
, MiniBatchDictionaryLearning
, SparsePCA
, MiniBatchSparsePCA
, sparse_encode
fit (X[, y]) | Do nothing and return the estimator unchanged |
fit_transform (X[, y]) | Fit to data, then transform it. |
get_params ([deep]) | Get parameters for this estimator. |
set_params (**params) | Set the parameters of this estimator. |
transform (X[, y]) | Encode the data as a sparse combination of the dictionary atoms. |
__init__(dictionary, transform_algorithm='omp', transform_n_nonzero_coefs=None, transform_alpha=None, split_sign=False, n_jobs=1)
[source]
fit(X, y=None)
[source]
Do nothing and return the estimator unchanged
This method is just there to implement the usual API and hence work in pipelines.
fit_transform(X, y=None, **fit_params)
[source]
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
Parameters: |
X : numpy array of shape [n_samples, n_features] Training set. y : numpy array of shape [n_samples] Target values. |
---|---|
Returns: |
X_new : numpy array of shape [n_samples, n_features_new] Transformed array. |
get_params(deep=True)
[source]
Get parameters for this estimator.
Parameters: |
deep: boolean, optional : If True, will return the parameters for this estimator and contained subobjects that are estimators. |
---|---|
Returns: |
params : mapping of string to any Parameter names mapped to their values. |
set_params(**params)
[source]
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter>
so that it’s possible to update each component of a nested object.
Returns: | self : |
---|
transform(X, y=None)
[source]
Encode the data as a sparse combination of the dictionary atoms.
Coding method is determined by the object parameter transform_algorithm
.
Parameters: |
X : array of shape (n_samples, n_features) Test data to be transformed, must have the same number of features as the data used to train the model. |
---|---|
Returns: |
X_new : array, shape (n_samples, n_components) Transformed data |
sklearn.decomposition.SparseCoder
© 2007–2016 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.SparseCoder.html