class sklearn.decomposition.ProjectedGradientNMF(*args, **kwargs)
[source]
Non-Negative Matrix Factorization (NMF)
Find two non-negative matrices (W, H) whose product approximates the non- negative matrix X. This factorization can be used for example for dimensionality reduction, source separation or topic extraction.
The objective function is:
0.5 * ||X - WH||_Fro^2 + alpha * l1_ratio * ||vec(W)||_1 + alpha * l1_ratio * ||vec(H)||_1 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 + 0.5 * alpha * (1 - l1_ratio) * ||H||_Fro^2
Where:
||A||_Fro^2 = \sum_{i,j} A_{ij}^2 (Frobenius norm) ||vec(A)||_1 = \sum_{i,j} abs(A_{ij}) (Elementwise L1 norm)
The objective function is minimized with an alternating minimization of W and H.
Read more in the User Guide.
Parameters: |
n_components : int or None Number of components, if n_components is not set all features are kept. init : ‘random’ | ‘nndsvd’ | ‘nndsvda’ | ‘nndsvdar’ | ‘custom’ Method used to initialize the procedure. Default: ‘nndsvdar’ if n_components < n_features, otherwise random. Valid options:
solver : ‘pg’ | ‘cd’ Numerical solver to use: ‘pg’ is a Projected Gradient solver (deprecated). ‘cd’ is a Coordinate Descent solver (recommended). New in version 0.17: Coordinate Descent solver. Changed in version 0.17: Deprecated Projected Gradient solver. tol : double, default: 1e-4 Tolerance value used in stopping conditions. max_iter : integer, default: 200 Number of iterations to compute. random_state : integer seed, RandomState instance, or None (default) Random number generator seed control. alpha : double, default: 0. Constant that multiplies the regularization terms. Set it to zero to have no regularization. New in version 0.17: alpha used in the Coordinate Descent solver. l1_ratio : double, default: 0. The regularization mixing parameter, with 0 <= l1_ratio <= 1. For l1_ratio = 0 the penalty is an elementwise L2 penalty (aka Frobenius Norm). For l1_ratio = 1 it is an elementwise L1 penalty. For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2. New in version 0.17: Regularization parameter l1_ratio used in the Coordinate Descent solver. shuffle : boolean, default: False If true, randomize the order of coordinates in the CD solver. New in version 0.17: shuffle parameter used in the Coordinate Descent solver. nls_max_iter : integer, default: 2000 Number of iterations in NLS subproblem. Used only in the deprecated ‘pg’ solver. Changed in version 0.17: Deprecated Projected Gradient solver. Use Coordinate Descent solver instead. sparseness : ‘data’ | ‘components’ | None, default: None Where to enforce sparsity in the model. Used only in the deprecated ‘pg’ solver. Changed in version 0.17: Deprecated Projected Gradient solver. Use Coordinate Descent solver instead. beta : double, default: 1 Degree of sparseness, if sparseness is not None. Larger values mean more sparseness. Used only in the deprecated ‘pg’ solver. Changed in version 0.17: Deprecated Projected Gradient solver. Use Coordinate Descent solver instead. eta : double, default: 0.1 Degree of correctness to maintain, if sparsity is not None. Smaller values mean larger error. Used only in the deprecated ‘pg’ solver. Changed in version 0.17: Deprecated Projected Gradient solver. Use Coordinate Descent solver instead. |
---|---|
Attributes: |
components_ : array, [n_components, n_features] Non-negative components of the data. reconstruction_err_ : number Frobenius norm of the matrix difference between the training data and the reconstructed data from the fit produced by the model. n_iter_ : int Actual number of iterations. |
C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007), 2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/
Cichocki, Andrzej, and P. H. A. N. Anh-Huy. “Fast local algorithms for large scale nonnegative matrix and tensor factorizations.” IEICE transactions on fundamentals of electronics, communications and computer sciences 92.3: 708-721, 2009.
>>> import numpy as np >>> X = np.array([[1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]]) >>> from sklearn.decomposition import NMF >>> model = NMF(n_components=2, init='random', random_state=0) >>> model.fit(X) NMF(alpha=0.0, beta=1, eta=0.1, init='random', l1_ratio=0.0, max_iter=200, n_components=2, nls_max_iter=2000, random_state=0, shuffle=False, solver='cd', sparseness=None, tol=0.0001, verbose=0)
>>> model.components_ array([[ 2.09783018, 0.30560234], [ 2.13443044, 2.13171694]]) >>> model.reconstruction_err_ 0.00115993...
fit (X[, y]) | Learn a NMF model for the data X. |
fit_transform (X[, y, W, H]) | Learn a NMF model for the data X and returns the transformed data. |
get_params ([deep]) | Get parameters for this estimator. |
inverse_transform (W) | Transform data back to its original space. |
set_params (**params) | Set the parameters of this estimator. |
transform (X) | Transform the data X according to the fitted NMF model |
__init__(*args, **kwargs)
[source]
DEPRECATED: It will be removed in release 0.19. Use NMF instead.’pg’ solver is still available until release 0.19.
fit(X, y=None, **params)
[source]
Learn a NMF model for the data X.
Parameters: |
X: {array-like, sparse matrix}, shape (n_samples, n_features) : Data matrix to be decomposed |
---|---|
Returns: |
self : |
Attributes: |
components_ : array-like, shape (n_components, n_features) Factorization matrix, sometimes called ‘dictionary’. n_iter_ : int Actual number of iterations for the transform. |
fit_transform(X, y=None, W=None, H=None)
[source]
Learn a NMF model for the data X and returns the transformed data.
This is more efficient than calling fit followed by transform.
Parameters: |
X: {array-like, sparse matrix}, shape (n_samples, n_features) : Data matrix to be decomposed W : array-like, shape (n_samples, n_components) If init=’custom’, it is used as initial guess for the solution. H : array-like, shape (n_components, n_features) If init=’custom’, it is used as initial guess for the solution. |
---|---|
Returns: |
W: array, shape (n_samples, n_components) : Transformed data. |
Attributes: |
components_ : array-like, shape (n_components, n_features) Factorization matrix, sometimes called ‘dictionary’. n_iter_ : int Actual number of iterations for the transform. |
get_params(deep=True)
[source]
Get parameters for this estimator.
Parameters: |
deep: boolean, optional : If True, will return the parameters for this estimator and contained subobjects that are estimators. |
---|---|
Returns: |
params : mapping of string to any Parameter names mapped to their values. |
inverse_transform(W)
[source]
Transform data back to its original space.
Parameters: |
W: {array-like, sparse matrix}, shape (n_samples, n_components) : Transformed data matrix |
---|---|
Returns: |
X: {array-like, sparse matrix}, shape (n_samples, n_features) : Data matrix of original shape .. versionadded:: 0.18 : |
set_params(**params)
[source]
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter>
so that it’s possible to update each component of a nested object.
Returns: | self : |
---|
transform(X)
[source]
Transform the data X according to the fitted NMF model
Parameters: |
X: {array-like, sparse matrix}, shape (n_samples, n_features) : Data matrix to be transformed by the model |
---|---|
Returns: |
W: array, shape (n_samples, n_components) : Transformed data |
Attributes: |
n_iter_ : int Actual number of iterations for the transform. |
© 2007–2016 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.ProjectedGradientNMF.html