class sklearn.decomposition.LatentDirichletAllocation(n_topics=10, doc_topic_prior=None, topic_word_prior=None, learning_method=None, learning_decay=0.7, learning_offset=10.0, max_iter=10, batch_size=128, evaluate_every=-1, total_samples=1000000.0, perp_tol=0.1, mean_change_tol=0.001, max_doc_update_iter=100, n_jobs=1, verbose=0, random_state=None)
[source]
Latent Dirichlet Allocation with online variational Bayes algorithm
New in version 0.17.
Read more in the User Guide.
fit (X[, y]) | Learn model for the data X with variational Bayes method. |
fit_transform (X[, y]) | Fit to data, then transform it. |
get_params ([deep]) | Get parameters for this estimator. |
partial_fit (X[, y]) | Online VB with Mini-Batch update. |
perplexity (X[, doc_topic_distr, sub_sampling]) | Calculate approximate perplexity for data X. |
score (X[, y]) | Calculate approximate log-likelihood as score. |
set_params (**params) | Set the parameters of this estimator. |
transform (X) | Transform data X according to the fitted model. |
__init__(n_topics=10, doc_topic_prior=None, topic_word_prior=None, learning_method=None, learning_decay=0.7, learning_offset=10.0, max_iter=10, batch_size=128, evaluate_every=-1, total_samples=1000000.0, perp_tol=0.1, mean_change_tol=0.001, max_doc_update_iter=100, n_jobs=1, verbose=0, random_state=None)
[source]
fit(X, y=None)
[source]
Learn model for the data X with variational Bayes method.
When learning_method
is ‘online’, use mini-batch update. Otherwise, use batch update.
Parameters: |
X : array-like or sparse matrix, shape=(n_samples, n_features) Document word matrix. |
---|---|
Returns: |
self : |
fit_transform(X, y=None, **fit_params)
[source]
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
Parameters: |
X : numpy array of shape [n_samples, n_features] Training set. y : numpy array of shape [n_samples] Target values. |
---|---|
Returns: |
X_new : numpy array of shape [n_samples, n_features_new] Transformed array. |
get_params(deep=True)
[source]
Get parameters for this estimator.
Parameters: |
deep: boolean, optional : If True, will return the parameters for this estimator and contained subobjects that are estimators. |
---|---|
Returns: |
params : mapping of string to any Parameter names mapped to their values. |
partial_fit(X, y=None)
[source]
Online VB with Mini-Batch update.
Parameters: |
X : array-like or sparse matrix, shape=(n_samples, n_features) Document word matrix. |
---|---|
Returns: |
self : |
perplexity(X, doc_topic_distr=None, sub_sampling=False)
[source]
Calculate approximate perplexity for data X.
Perplexity is defined as exp(-1. * log-likelihood per word)
Parameters: |
X : array-like or sparse matrix, [n_samples, n_features] Document word matrix. doc_topic_distr : None or array, shape=(n_samples, n_topics) Document topic distribution. If it is None, it will be generated by applying transform on X. |
---|---|
Returns: |
score : float Perplexity score. |
score(X, y=None)
[source]
Calculate approximate log-likelihood as score.
Parameters: |
X : array-like or sparse matrix, shape=(n_samples, n_features) Document word matrix. |
---|---|
Returns: |
score : float Use approximate bound as score. |
set_params(**params)
[source]
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter>
so that it’s possible to update each component of a nested object.
Returns: | self : |
---|
transform(X)
[source]
Transform data X according to the fitted model.
Parameters: |
X : array-like or sparse matrix, shape=(n_samples, n_features) Document word matrix. |
---|---|
Returns: |
doc_topic_distr : shape=(n_samples, n_topics) Document topic distribution for X. |
sklearn.decomposition.LatentDirichletAllocation
© 2007–2016 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.LatentDirichletAllocation.html