class sklearn.base.ClassifierMixin
[source]
Mixin class for all classifiers in scikit-learn.
score (X, y[, sample_weight]) | Returns the mean accuracy on the given test data and labels. |
__init__()
x.__init__(...) initializes x; see help(type(x)) for signature
score(X, y, sample_weight=None)
[source]
Returns the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
Parameters: |
X : array-like, shape = (n_samples, n_features) Test samples. y : array-like, shape = (n_samples) or (n_samples, n_outputs) True labels for X. sample_weight : array-like, shape = [n_samples], optional Sample weights. |
---|---|
Returns: |
score : float Mean accuracy of self.predict(X) wrt. y. |
© 2007–2016 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.base.ClassifierMixin.html